A Brief History of PDM

To The Trade

Processing Equipment & Services

Hot Rolled Bars

Structural Shapes

Tubing Products

Pipe Products

Plate Products

Sheet Products

Expanded Metal & Grating Products

Cold Finished & Alloy Bar Products

Rebar

Color Codes

Service Locations

<u>Rocky Mountain Region</u>

PDM Spanish Fork 1100 N. 300 W. P.O. Box 280 Spanish Fork, UT 84660 (801) 798-8676 (800) 444-7361 (801) 798-3605 Fax

PDM Denver

4755 N. Washington Street Denver, CO 80216 (303) 297-1456 (800) 736-4277 (303) 295-3538 Fax

Nevada

PDM Las Vegas

4475 Alto Avenue Las Vegas, NV 89115 (702) 413-0067 (888) 413-4736 (702) 413-0006 Fax

PDM Sparks

1250 Kleppe Lane Sparks, NV 89431 (775) 358-1441 (800) 736-1400 (775) 355-1443 Fax

Pacific Northwest

PDM Woodland

1785 Schurman Way Woodland, WA 98674 (360) 225-1133 (800) 451-9581 (360) 225-0204 Fax

California

PDM Corporate

9245 Laguna Springs Dr., Suite 350 Elk Grove, CA 95758 (916) 513-4548

PDM Santa Clara

3500 Bassett Street Santa Clara, CA 95054 (408) 988-3000 (800) 672-8801 (408) 988-6966 Fax

PDM Plate Processing Center

4005 E. Church Avenue Fresno, CA 93725 (559) 442-1410 (800) 222-3235 (559) 442-1409 Fax

PDM Stockton

3535 E. Myrtle Street Stockton, CA 95205 (209) 943-0513 (800) 800-4736 (209) 466-8420 Fax

Feralloy PDM Steel Service

936 Performance Dr. Stockton, CA 95206 (209) 234-0548 (800) 972-5986 (209) 234-0549 Fax

Copyright 2020 PDM Steel Service Centers, Inc. Printed in U.S.A.

Service Locations

Table of Contents

TABLE OF CONTENTS

A Brief History Of PDM

PDM entered the steel service center industry in 1954 with the acquisition of the Proctor-James Steel Company in San Jose, California. In 1955, Kyle & Company was purchased, with facilities in Fresno, Stockton, and Sacramento. With four service centers, PDM was able to provide outstanding service throughout central and northern California.

In 1962, a new facility was constructed in Fresno, California. In 1968, the existing operations were greatly augmented by the completion of a large, state of the art service center in Stockton, California. The facility utilized the most modern material handling equipment of the time.

In 1974, a new warehouse was built in Reno, Nevada to improve service in central and northern Nevada as well as the Eastern Sierras in California.

To provide the greatest possible service and selection to customers, the "Common Inventory Concept" was adopted which provided customers throughout the company, access to uncommon, hard to find, slow moving items, without the burden of carrying duplicate inventories in each location. Under the Common Inventory Concept, the new Stockton facility became the geographical hub of the service wheel with spokes running east to Reno, south to Fresno and west to Santa Clara. The "Interplant Transfer System" was developed to quickly move this common inventory between service centers, providing short lead-time delivery of most items regardless of the inventory location. This concept proved to be so successful that future PDM operations were either built or expanded to provide other "hub" type distribution facilities.

In 1977, a new service center was established in Spanish Fork, (close to Provo) Utah. Over the years, this location was expanded numerous times to meet the market demands. It is now a full line distribution and processing facility acting as the "hub" for the Intermountain Region providing service for customers in Utah, Idaho, Wyoming, and Colorado.

In January 1997, PDM purchased General Steel, a carbon steel service center in Vancouver, Washington. In April of 1999 this operation moved into a newly designed and built facility in Woodland, Washington and became the next "hub" in the Great Northwest. The Woodland service center serves Washington, and Oregon. In July 2001, the Reliance Steel & Aluminum Co. of Los Angeles, California purchased PDM Steel Service Centers. Today PDM Steel operates as a wholly-owned subsidiary now named: PDM Steel Service Centers, Inc.

PDM entered the Las Vegas market in late 2003 working from a remote office with delivery supplemented through both the Fresno and Spanish Fork locations. By early 2005, the company moved into a small full-service warehouse with delivery throughout Southern Nevada, Southern Utah, and Northern Arizona.

In May of 2008, PDM acquired Engbar Pipe and Steel in Denver, Colorado. With the support of regular delivery and a vast inventory from the Spanish Fork operation, PDM Denver expanded their service and product offering to the greater Colorado market and parts of Wyoming. PDM built and moved into a new, state of the art facility in Las Vegas in August 2008. This operation now houses a complete product offering with multiple processing capabilities.

As demand for "pre-production processing" material grew, the company responded by also investing in new processing equipment installed at all facilities. State of the art automatic saws with controlled feed-in and feedout tables and enhanced plate cutting equipment have been upgraded in almost all locations.

In 2008, the company purchased its first multifunction precision plate processing center and located it in Fresno. In 2010 a second center was located in Spanish Fork. These processing centers provided improved thermal cutting capabilities and multifunction processes, like drilling, punching, tapping, scribing, marking, and a variety of machining options all on one machine. In that same year, PDM installed a 120 ton iron worker in Fresno augmenting the production of plate and small structural parts. The company has since continued to expand its plate processing capabilities with the installations of a 1,000-ton 24' press brake, multi-axis beveling tables, laser cutting machines and another cutting edge machining center.

In June of 2013, PDM acquired the Stockton location of Feralloy, another Reliance subsidiary. Now known as Feralloy PDM Steel Service (FPSS), this operation specializes in flat roll steel product distribution, coil slitting, cut-to-length and services a vast array of customers in the Western US.

In 2016 PDM relocated its corporate headquarters from Stockton to a commercial building in Elk Grove, California and the Stockton service center is now a standalone facility.

Over the last few years, PDM has put an even greater focus on quality and continuous improvement and has 4 locations that are ISO 9001:2015 Certified. PPC (2017), FPSS (recertified 2018), Stockton (2018), Spanish Fork (2019).

The most recent change occurred in 2019 when the company introduced new laser cutting capabilities with the introduction of a new tube laser. PDM is now able to offer customers 360-degree processing on large scale structural products in virtually any shape or profile. This added tremendous service capacity to our customer base across industries by offering them a simplified, single solution that decreases the need for welding by creating "smart parts" with tabs and features on processed material to facilitate quicker assembly.

PDM Steel is continuously evaluating opportunities to improve service, inventories, and delivery for our diversified customer base. Our pledge to you in the future, as in the past, will always be to provide you with the finest...

Service When And Where You Need It!

To The Trade

Effective 2017

This catalog is published for general information. It is not a stock list. Call to confirm the availability of particular sizes and grades. Specific application of the information or products listed herein may require professional assistance or interpretation. Information on product specifications is highly abridged. The latest ASTM (www.astm.org) documents should be consulted for full and accurate information on product specifications. Technical information on any questions as to structural design, weldability, formability, allowable stress, heat treating, material properties or characteristics, etc. should be referred to the appropriate professional consultant.

PDM Steel Service Centers, Inc. TERMS AND CONDITIONS OF SALE

PDM Steel Service Centers, Inc. ("Seller") and the party purchasing goods and/or materials ("Customer") hereby agree to the following Terms and Conditions of Sale ("Terms and Conditions"):

1. Customer's Acceptance of Terms. These Terms and Conditions of Sale constitute the final and entire understanding and agreement between Seller and Customer relating to the goods and/or materials ("Products") sold by Seller to Customer. Customer's acceptance of the Products is expressly conditioned on Customer's acceptance of these Terms and Conditions. Customer's acceptance is limited to these Terms and Conditions, and no different, inconsistent and/or additional terms and conditions submitted by Customer in acknowledging or accepting these Terms and Conditions or in issuing any purchase orders, releases, shipping instructions or other documents in connection with the Products, whether prior or subsequent, shall modify or amend these Terms and Conditions or be valid or binding against Seller, unless specifically accepted by Seller in writing. In the event of any conflict, discrepancy or inconsistency between these Terms and Conditions and the terms and conditions contained in any document submitted by Customer, these Terms and Conditions shall govern even if Customer's document expressly limits acceptance to Customer's terms and conditions. No course or pattern of dealings or conduct between Seller and Customer and no usage of trade shall be relevant to determine the meaning or intent of these Terms and Conditions even though the accepting or acquiescing party has knowledge of the nature of the performance and an opportunity for objection.

2. <u>Open Credit Account</u>. Seller reserves the right in its sole discretion to approve, conditionally approve or disapprove any request by Customer for credit. The amount of credit Seller extends to Customer will be determined by Seller in its discretion and may vary from time to time. Customer shall notify Seller, in writing, of any error in any

INTRODUCTION

invoice within ten (10) days after the Customer's receipt of such invoice, and, if no such notice from Customer is received by Seller, the invoice shall be deemed to be correct and payable as delivered to Customer.

3. Open Account Payment Terms. TIME FOR CUSTOMER'S PAY-MENT OF THE PURCHASE PRICE FOR THE PRODUCTS SHALL BE OF THE ESSENCE. All sums owing Seller by Customer shall be paid in accordance with the provisions of Seller's invoice or any written quotation issued by Seller and signed by Customer. In the absence of such express provisions, Seller's terms will be net thirty (30) days from the date of invoice. All sums past due and owing to Seller shall bear interest at the rate of the lesser of one and one-half percent (1.5%) per month or the maximum rate permitted by applicable law from the invoice date until paid in full. All payments made by Customer to Seller shall be applied in the following priority: (a) first to the amounts, if any, due to Seller for attorneys' fees and court costs, (b) second to the amounts, if any, due to Seller in the event of Customer's default, (c) third to the amount, if any, of interest due to Seller as a result of Customer's late payment and (d) finally to the balance of the purchase price due to Seller for the Products.

4. <u>Customer's Representations and Warranties</u>. Upon Seller's request from time to time, Customer will provide Seller with current financial information. Customer represents and warrants that any financial information provided to Seller will be true and correct in all material respects and shall fairly and accurately present the financial condition of Customer as of the date of such financial statements. Customer hereby authorizes Seller to review and evaluate Customer's credit background from time to time.

5. <u>Security Interest</u>. To secure Customer's full and prompt payment of the purchase price for the Products, Customer hereby grants to Seller a first priority, purchase money security interest in and to the Products and all products and proceeds therefrom. Customer authorizes Seller to file a UCC financing statement to perfect this security interest at any time.

6. <u>Cancellation and Returns</u>. Customer may not cancel any order of Products for Customer's convenience without Seller's prior written consent. Seller may, in its sole opinion, authorize Customer in writing to cancel Products normally carried in Seller's inventory. Any cancellation so authorized shall be subject to a cancellation charge of 15% of the purchase price. Customer may not cancel any processed Products, specially manufactured Products, or Products not normally carried in Seller's inventory.

7. <u>Approval of Sale; Prior Sale</u>. No sale shall be final until approved by the corporate office of Seller. All quotations for Products normally carried in Seller's inventory are subject to prior sale, unless otherwise specified in writing by Seller. All quotations for specially

manufactured Products and Products not normally carried in Seller's inventory are subject to mill availability.

8. <u>Price</u>; <u>Basis of Invoices</u>. Seller's price is subject to and contingent upon Customer purchasing the entire quantity of Products identified in Seller's quotation. If Customer purchases less than the entire quantity of Products identified therein, prices may vary. Seller shall invoice all Products in accordance with Seller's published schedule of weights, areas, sizes and lengths. All weights shall be theoretical and shall be determined in accordance with ASTM standards.

9. Force Majeure. Neither Customer nor Seller shall be liable for any delay, breach or nonperformance of these Terms and Conditions (other than the payment of money) wholly or partly due to any cause beyond such party's control ("Force Majeure") including, without limitation, acts of God; war; civil disturbances; acts of any foreign, federal, state, local or other governmental authority; non-availability, delay or diversion of shipping or other transport; lock outs, strikes or trade disputes; break down or interruption of any plant, machinery, equipment or utilities; shortage, non-availability or allocation of raw materials or commodities; any combination of the foregoing, or any other cause outside of such party's control whether similar to or different from those stated herein. On the happening of Force Majeure, the affected party shall advise the other party in writing with reasonable promptness and the affected party may suspend its performance during such Force Majeure without liability to the other party.

10. <u>Title; Risk of Loss</u>. All prices quoted by Seller are Ex Works Seller's loading dock. Risk of loss shall pass to Customer at the time of delivery. Title shall pass to Customer upon loading on the transportation facility (i.e. truck or railcar), irrespective of any freight allowance, prepayment of freight or delivery terms.

11. Inspection; Claims. Customer shall carefully inspect all Products and shipping documents promptly upon delivery. No claim for shortages or Products damaged during delivery will be valid or enforceable against Seller unless (a) Customer notifies Seller in writing specifying in detail the shortage or damage within five (5) days from the date of delivery; (b) Customer returns the damaged Products to Seller within ten (10) days following delivery; (c) upon return, Seller confirms such damage; and (d) Customer has fulfilled all of the payment terms. Customer's notice must be accompanied by the original freight bill, with notation on the face thereof by an authorized agent for the carrier as to the Products claimed to be short or damaged during transit. Customer shall be deemed to have waived any claim for shortages or Products damaged in transit if Customer fails to so notify Seller within five (5) days following delivery. Any processing or use of the Products by Customer, other than return to Seller, shall be conclusive as to Customer's acceptance of the Products as being satisfactory and in accordance with these Terms and Conditions.

INTRODUCTION

12. <u>Limited Warranty</u>. Seller warrants to Customer for a period of twelve (12) months following delivery only that (a) the Products shall conform to the description and specifications, subject to industry standard tolerances and variations; and (b) Seller has good title to the Products free and clear of liens, security interests or encumbrances by any party claiming by, through or under Seller. **SELLER HEREBY DISCLAIMS AND CUSTOMER HEREBY WAIVES ANY AND ALL OTHER ORAL OR WRITTEN WARRANTIES IN RESPECT OF THE PRODUCTS, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SELLER EXPRESSLY DISCLAIMS ANY AND ALL OTHER WARRANTIES UNLESS EX-PRESSLY MADE IN WRITING AND SIGNED BY AN OFFICER OF SELLER.**

Seller's liability shall be limited, at Seller's option, to repair or replacement of non-conforming Products or refund of the purchase price. The foregoing sets forth Seller's entire obligation and liability to Customer in respect of the Products, and Customer accepts the same as its entire right and sole remedy in relation to any breach by Seller of these Terms and Conditions. IN NO EVENT OR CIR-CUMSTANCE WHATSOEVER SHALL SELLER BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY, PUNITIVE OR SPECIAL DAMAGES OF ANY TYPE OR NATURE EVEN IF SELLER HAS REASON TO KNOW OF THE POSSIBILITY OF SUCH DAMAGES. SELLER'S TOTAL LIABILITY ARISING OUT OF OR IN ANY WAY RELATED TO THE PRODUCTS, WHETHER BASED IN CONTRACT, WARRANTY, TORT (INCLUDING NEGLI-GENCE AND/OR GROSS NEGLIGENCE), STRICT LIABILITY, OR ANY OTHER CAUSE OF ACTION, SHALL IN NO EVENT EXCEED THE PURCHASE PRICE ACTUALLY PAID BY CUSTOMER FOR THE PRODUCTS TO WHICH SUCH LIABILITY RELATES.

13. <u>Unofficial Communications</u>. No agents, employees, or representatives of Seller have any authority to bind Seller to any affirmation, representation, guaranty or warranty other than those expressly set forth in these Terms and Conditions. Any technical advice furnished by Seller with respect to the selection or use of Products is given without charge, and Seller assumes no obligation or liability whatsoever for the advice given or the results obtained, all such advice being given and accepted at Customer's sole risk.

14. <u>Taxes</u>. All prices quoted by Seller are exclusive of all taxes. In addition to the purchase price, Customer shall pay or reimburse Seller the amount of all sales, use and ad valorem taxes, excises, duties and/ or other governmental charges that Seller may be required to pay with respect to the Products.

15. <u>Indemnification</u>. Customer shall indemnify, defend, and hold harmless Seller, its affiliates, and the shareholders, directors, officers,

employees, agents, successors and assigns of all of them (collectively, the "Seller Indemnified Parties") from and against any and all losses, claims, damages, injuries, liabilities, taxes, fines, penalties, costs or expenses (including attorneys' fees and court costs) incurred or suffered by any of the Seller Indemnified Parties to the extent directly or indirectly arising out of, relating to or resulting from (a) Customer's unloading, storing, handling, packaging, processing, fabrication, or use of the Products; or (b) any negligence, act, or omission of Customer, its employees, agents and anyone for whom Customer may be legally liable.

16. Default; Bankruptcy. Upon failure of Customer to make any payment required hereunder, without deduction, setoff or counterclaim, within ten (10) days after the same becomes due, or if Customer defaults in the performance of any other obligation, term, or condition, or if Customer shall make an assignment for the benefit of creditors, or in the event of a commencement of proceedings by or against Customer involving bankruptcy, insolvency, reorganization or arrangement, or in the case of other significant financial instability of Customer, Seller, without demand or notice of any kind and without prejudice to any other right or remedy of Seller, may (a) terminate the sale of all or any of the Products; (b) suspend the release of any Products on consignment to Customer and defer further deliveries; (c) require Customer to return or allow Seller to reclaim and/or pickup any unpaid Products; (d) require Customer to pay the purchase price for any or all the Products not yet paid for in full (whether such Products are on-hand, in process or on-order, and whether or not delivered) and any other sums due from Customer to Seller, which Customer shall pay on Seller's first demand notwithstanding any credit period or other forbearance; (e) place any Products identified to Customer in storage at the cost and risk of Customer; (f) apply any payments made by Customer as Seller may elect without regard to any appropriation by Customer; (g) sell any or all of the Products at such price as may be available but without having any duty to Customer to do so at the best or any particular price, and collect any shortage in price from Customer; and/or (h) exercise any other right or remedy that Seller may have at law or in equity in the event of Customer's default. Seller is entitled to immediate relief from the automatic stay should Customer file for protection under the bankruptcy code. Customer agrees not to oppose relief from the automatic stay if sought by Seller.

17. <u>Waiver</u>. Any waiver of these Terms and Conditions, to be valid or binding, must be in writing and signed by the party against which such waiver is to be enforced, and shall not constitute a continuing waiver of any other breach or default, and acceptance by Seller of any payments with knowledge of any breach or default shall not constitute such waiver. No omission or delay by either party in exercising any right, power or privilege shall operate as a waiver thereof, nor shall any single or partial exercise of any such right, power or privilege preclude any other or further exercise thereof or exercise of any other right, power, or privilege.

18. <u>Governing Law and Venue</u>. THESE TERMS AND CONDI-TIONS SHALL BE GOVERNED BY AND CONSTRUED IN ACCOR-DANCE WITH THE LAWS OF THE STATE IN WHICH SELLER IS LOCATED WITHOUT REGARD TO ITS CHOICE OF LAW OR CON-FLICTS OF LAWS PROVISIONS. ANY CLAIM, DISPUTE OR CON-TROVERSY ARISING OUT OF OR RELATING TO THESE TERMS AND CONDITIONS OR THE PRODUCTS SHALL BE RESOLVED BY LITIGATION BROUGHT EXCLUSIVELY IN THE FEDERAL OR STATE COURTS HAVING JURISDICTION OVER SELLER'S LOCA-TION AND SELLER AND CUSTOMER IRREVOCABLY CONSENT TO THE JURISDICTION OF SAID COURTS.

19. <u>Prevailing Party</u>. In the event of any claim, dispute or controversy arising out of or relating to these Terms and Conditions, the prevailing party shall be entitled to recover it attorneys' fees and court costs from the non-prevailing party.

20. <u>Assignment and Third Party Rights</u>. Neither party may delegate or assign its rights or obligations without the other party's prior written consent, except that Seller may assign its rights and obligations to an affiliate upon prior written notice to Customer. Any delegation or assignment without such written consent shall be null and void, and without any legal force or effect. Notwithstanding Seller's consent to any assignment or delegation by Customer, these Terms and Conditions shall be fully binding on Customer, its successors and permitted assigns. These Terms and Conditions shall not be deemed or construed as granting or conferring any rights in or providing any basis for claims by third parties.

21. <u>Severability</u>. If any provision contained in these Terms and Conditions or the application thereof to the parties shall be finally determined by a court of competent jurisdiction to be invalid, illegal or unenforceable in any respect, such provision shall be deemed severed and deleted from these Terms and Conditions and replaced with a provision that is valid, legal and enforceable to the fullest extent permitted by applicable law and the validity, legality and enforceability of the remaining provisions of these Terms and Conditions and any other application thereof to the parties shall not in any way be affected or impaired thereby.

22. <u>Acceptance/Enforceability of Copies</u>. Seller may, at Seller's sole discretion, accept a facsimile copy, electronic copy, or photocopy of any order between Seller and Customer in lieu of an original document. Customer consents to Seller's use of such copy and waives any right to object to the use of a copy in place of the original and any right to require Seller to subsequently produce an original document.

23. <u>Entire Agreement</u>. These Terms and Conditions contain the final and entire agreement of the parties hereto with respect to the sale and purchase of the Products and all other transactions contemplated herein, and supersede all prior or contemporaneous discussions, negotiations, agreements or understandings, whether written or oral, between the parties relating to the subject matter hereof. These Terms and Conditions may be changed, amended, modified, revised or supplemented only by a written instrument signed by an authorized manager or officer of Seller.

Processing Services

Sawing to Length

Nearly all band saws throughout PDM are fed with state of the art conveyor systems that greatly increase productivity and overall tolerances. With CNC controlled indexing and automated miter cutting, these operations are efficient and very accurate.

Capacities: Jaw openings up to 40" x 48" Miter cutting capacity up to 25" x 25" and 45 degrees CNC indexing, accurate bundle cutting Cost saving nesting capabilities

Plate Shearing

Driven by large hydraulic rams, high carbon blades come together like a large pair of scissors to cut steel plates. Plate shears provide fast and accurate square and rectangular part production in a wide variety of thicknesses.

Capacities: Cuts up to ¼' thick mild steel plate Cuts up to 13'-0" wide

Thermal Shape Cutting

Thermal cutting employs the processes of oxy fuel or high definition plasma cutting. Oxy fuel cutting is utilized to handle thicker plate cutting (up to 8") while high definition plasma cuts much faster in thickness ranging from 10 ga. up to 2" thick.

Capacities: Cuts up to 120" wide Cuts up to 60' long * See Shape Chart on page 18.

Punching, Drilling, Tapping, Marking, Scribing, and Milling

Our precision plate processing machines can cut, punch, drill, tap, mark, scribe, and mill parts in a multitude of thicknesses and grades with improved accuracy. Due to a method of stationary gantry for fixed points of operation, this provides greater accuracy in cutting and the other processes.

Capacities: Milling both face and end Drilling up to 3" in diameter in 3" plate Punching up to 1-1/2" in diameter Tapping up to 1-1/2" in diameter Scribing layout lines and customized lettering Marking letter and number size: 2/3" wide x 5/8" tall High definition plasma up to 3" thick

Steel Forming Services

A 1,000 ton x 24' Cincinnati Press Brake provides a wide variety of forming shapes including angles, channels, zee's and more complex shapes.

Capacities: 1,000 ton downward force 24' forming bed 1/2" thick mild steel plate up to 24' long 1" thick mild steel plate up to 14" long

* See Forming Chart on page 17-20.

Multiple Angle Beveling

Chamfering and plate edge preparation using a full range of multiple axis beveling machines allows full beveling capabilities. From beveling on the fly, including radius beveling, these machines provide a vast array of beveling and edge preparation needs.

Capacities: Radius Beveling

Multiple angle beveling on the fly Multiple axis beveling With 120 tons of cutting power, the multi-function iron worker can bend and shear or punch flat bars, plates rounds and angles making connection plates, imbed plates, connecting rods and a multitude of small parts.

Capacities: Cuts angel up to $6 \ge 6 \ge 5/8^{\circ}$

Cuts mild steel rounds up to 2" in diameter Cuts mild steel plate up to 3/4" thick x 18" wide Punching up to 1 ½ diameter in 1" thick plate Bends up to 120 tons max Copes and Notches up to L6 x 4 x 3/8

Steel Beam Cambering Services

Cambering is a technique where the straightness of a structural steel beam is altered to provide additional strength and resistance to deflection. PDM Steel cambers structural steel beams using a heavy duty lateral hydraulic press to gently alter the steel beam into its desired shape.

Capacities: Beams up to 36" x 262 lbs./ft.

Material over 60ft Long

Camber standard and miscellaneous channels, beams, and tubing

Steel Beam Splitting Services

PDM splits steel beams into Tee's using a rotary beam shear. This process, results in less stress relieving during the splitting process. Additionally, Tee's are straightened through the cambering machine producing a clean, straight finished product.

Capacities: 6" to 40" depth

Up to 1/2" web thickness Up to 65' lengths Wide Flange, Standard Beams and Channels Miscellaneous channels into custom angles

Coil Sheet & Plate Services: Leveling, & Cut-to-Length

Leveling is the process where large steel coils are straightened and then cut-to-length for a specific requirement. This meets customer's needs to purchase exact length of material eliminating drop that would result from using stock size sheet or plate.

Capacities: 28 ga. to ½" thick 36" to 96" in width 17" to 480" in length

Laser Cutting

Laser cutting employs a highly concentrated laser beam to cut steel plate and sheet to precise tolerances without excessive heat in the cutting process.

Capacities: Up to ¼" thick Up to 60" wide Up to 120" long

* See Typical Burning Shapes on page 18.

Slitting

Slitting is the process of cutting a master coil into multiple narrower coils in one continuous pass. The finished narrower coils are rewound and packaged for shipment. Slit coils are often used in roll forming lines or continuous stamping operations. Very tight width tolerances (+/-.005) are possible.

Capacities: Thickness .018 Min to .135 Max Slit Coil Widths: 1" to 60"

1,000 ton Cincinnati Press Brake with 24' bed

360° Tube Laser Cutting

PDM Steel offers a single system capable of combining multiple manual operations into a single cycle, dramatically reducing your wait time and cost. Additionally, this process can decrease the amount of welding by developing "smart parts" including tabs and features on the processed material for quicker assembly.

Capacities: Standard Materials: Mild Steel, Stainless Steel, Aluminum (Other materials may be available upon request) Tube length for loading/unloading: 20'-40' infeed, up to 40' outfeed Maximum tube weight: 67 lbs./ft. Drilling & Tapping Min .125- 5/8" max Cutting Tolerance +/- .004

Round Min Dia: 1" Max Dia: 14"

Channel	Flat Bar	I-Beam
Min: 1.125" x 1.25"	Min: 5/16" x 2"	Min: 4" Max: 12"
Max: 12" x 4"	Max: 3/4" x 14"	H-Beam
		Min: 4" Max: 12"

Square

Min: 1" Max: 10"

Rectangle

Min: 1 x 1.25" Max: 12" x 8"

*Other open profiles upon request.

*You are not limited to just round, square or rectangular. Special shaped tubes or open sections can be programmed and cut without problems.

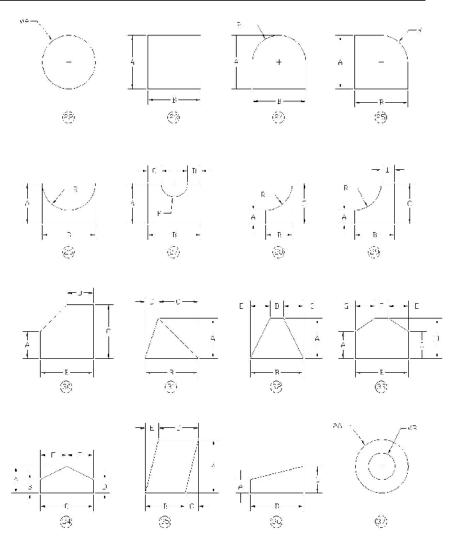
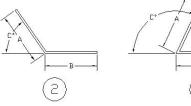
Angle

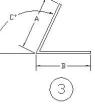
Min: 1.5"

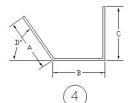
Max: 10"

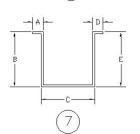
Processing

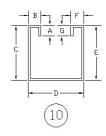
Typical Burn Shapes

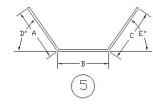



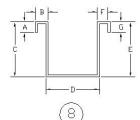

Table 1

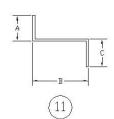

<u>Forming Chart</u>

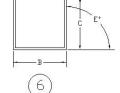

- Information Required 1. Shape # 2. Material Type & Thickness 3. Quantity 4. Length of Part 5. Dutside or Inside Dimensions Provided 6. Tolerances & Critical Dimensions

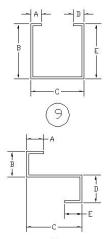


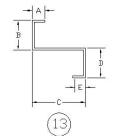


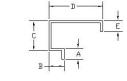






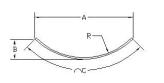


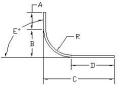

PROCESSING

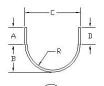

12

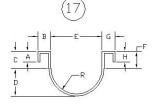
Forming Chart

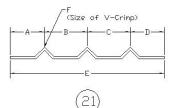

- Information Required 1. Shape # 2. Material Type & Thickness 3. Quantity 4. Length of Part 5. Dutside or Inside Dimensions Provided 6. Tolerances & Critical Dimensions

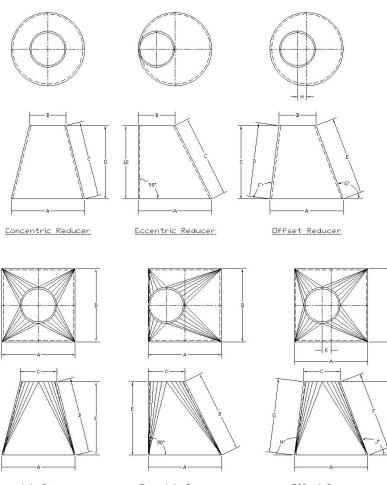




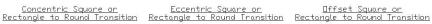



14


18




19



Note: Reducers and Transitions must be Formed in the Pressbrake and must be made in halves or more pelces dependent on size and material thickness. Press brake marks will be noticeable.

Hot Rolled Bars

Bar Size Shapes

Hot Rolled Bar size shapes (i.e. less than 3") are typically available in a multigrade product that meets the specifications of the following grades: A36, A529Gr50, and CSA44W/50W.

Bar Sized Channels											
			Size			Weight	Weight				
D			W		Т	Per Foot	Per 20' Bar				
3/4	Х			X	¹ / ₈	.56	11.20				
1	Х		$\frac{3}{2}$	X	1/	.68	13.60				
1	Х		$1/_{2}$	X	1/	.82	16.40				
$1 \frac{1}{4}$	Х		$\frac{1}{2}$	Х	1/	1.01	20.20				
$1 \frac{1}{2}$	Х		$\frac{1}{2}$	Х	1/0	1.12	22.40				
$1 \frac{1}{2}$	Х		9/16	Х	³ / ₁₆	1.44	28.80				
$1 \frac{1}{2}$	Х		<i>1</i> ₄	Х	1/	1.17	23.40				
2	Х		$1/_{2}$	Х	1/0	1.43	28.60				
2	Х		10	Х	³ / ₁₆	1.86	37.20				
2	Х		1 .	Х	1/.	1.59	31.80				
2	Х			X	$^{3}/_{16}$	2.32	46.40				
$2 /_{2}$	Х		5/8	X	$3/_{16}^{10}$	2.27	45.40				
				Bar	Sized	Tees	T → ← D ↓ ← W → ↓				
			Size			Weight	Weight				
D			W		Т	Per Foot	Per 20' Bar				
3/4	i	Х	3/4	Х	¹ / ₈	.620	12.24				
1		Х	1	Х	1/	.851	17.02				
1	¹ / ₄	Х	$1 \frac{1}{4}$	Х	1/0	1.091	21.82				
			-		16	1.551	31.02				
1	$\frac{1}{2}$	Х	$1^{1}/_{2}$	Х	16	1.902					
					1/4	2.432					
1	³ / ₄	Х	$1^{3}/_{4}$	Х	³ / ₁₆	2.262					
2		Х	2	Х	-14	3.563					
					2/16	4.304					
2	¹ / ₂	Х	$2 /_{2}$	Х	-1,	4.604					
					1/16	5.505					
					$3/_{8}^{10}$	6.406	128.12				

			Bar	Sized A	ngles	$\mathbf{T} \rightarrow \boxed{\begin{array}{c} & & \\ \leftarrow & \mathbf{A} \\ & \downarrow \\ & \downarrow \leftarrow \mathbf{B} \rightarrow \mathbf{i} \end{array}}$
		Size			Weight	Weight
Α		В		Т	Per Foot	Per 20' Bar
$\frac{1}{2}$	Х	$^{1}/_{2}$	Х	¹ / ₈	.380	7.60
$5/_{8}^{2}$	Х	5/8	Х	¹ /。	.480	9.60
$3/_{4}^{0}$	Х	$3/\frac{3}{4}$	Χ	1/8	.591	11.82
$\frac{7}{8}$	Х	$\frac{7}{8}$	Х	1/0	.701	14.02
1	Х	1 [°]	Х	1/0	.801	16.02
				³ / ₁₆	1.161	23.22
				1/ ₄	1.491	29.82
$1 \frac{1}{4}$	Х	$1 \frac{1}{4}$	Х	1/.	1.011	20.22
-		-		$\frac{3}{16}$	1.481	29.62
				1/4	1.922	38.44
$1 \frac{1}{2}$	Х	$1 \frac{1}{2}$	Х	1/8	1.231	24.62
				3/16	1.802	36.04
				1/	2.342	46.84
				$^{2}/_{16}$	2.863	57.26
				⁷ / ₈	3.353	67.06
$1^{3}/_{4}$	Х	$1^{3}/_{4}$	Х	1/0	1.441	28.82
				$\frac{3}{16}$	2.122	42.44
				1/4	2.773	55.46
2	Х	$1 \frac{1}{2}$	Х	1/2	1.441	28.82
				3/16	2.122	42.44
				1/4	2.773	55.46
2	Х	2	Х	1/g	1.652	33.04
				² / ₁₆	2.442	48.84
				1/4	3.193	63.86
				$\frac{5}{16}$	3.924	78.48
21/		- 1 /		<i>′</i> / _e	4.704	94.08
$2^{1}/_{2}$	Х	$1 \frac{1}{2}$	Х	⁷ / ₁₆	2.442	48.84
\mathbf{a}_{1}	37	2		1/4	3.193	63.86
$2^{1}/_{2}$	Х	2	Х	$\frac{3}{16}$	2.753	55.06
				1/4	3.623	72.46
				$\frac{5}{16}$	4.504	90.08
21/	v	2^{1}	v	۲.	5.305	106.10
$2 \frac{1}{2}$	Х	$2^{1}/_{2}$	Х	$\frac{3}{16}$	3.073	61.46
				$\frac{1}{4}$	4.104	82.08
				$\frac{5}{16}$	5.005 5.006	100.10
				$\frac{3}{8}$	5.906 7.707	$118.12 \\ 154.14$
				$1/2^{3}$	/./0/	1/4.14

Many bar sized shapes are also available in 30' & 40' lengths.

HOT ROLLED BARS

Hot Rolled Flats

				1		
Size I Inche		Weight Per Foot	Weight Per 20'	Size In Inches	Weight Per Foot	Weight Per 20'
$\frac{1}{4}$ x	¹ / ₂	.425	8.50	$\frac{5}{_{16}}$ x	$2\frac{3}{4}$ 2.925	58.50
4	5/8	.531	10.62		3 3.191	
	$3/_{4}^{0}$.639	12.78		$3^{1}/_{2}$ 3.723	74.46
	$\frac{7}{8}$.745	14.90		4 4.254	85.08
	1	.851	17.02		4 ¹ / ₂ 4.785	95.70
	$1^{1}/_{4}$	₄ 1.064	21.28		5 5.318	106.36
		1.276	25.52		$5^{1}/_{2}$ 5.850	117.00
		1.489	29.78		6 6.381	127.62
	2	1.702	34.04		7 7.445	148.90
	$2^{1}/_{2}$	4 1.915	38.30		8 8.508	170.16
	$2^{1}/$, 2.127	42.54	³ / ₈ x	¹ / ₂ .639	12.78
		⁴ 2.340	46.80		⁵ / ₈ .798	15.96
	3	2.552	51.04		³ / ₄ .957	19.14
	$3^{1}/_{2}$	₄ 2.766	55.32		⁷ / ₈ 1.117	22.34
	$3^{1}/2$	2.978	59.56		1 1.276	25.52
	4	3.403	68.06		$1 \frac{1}{4}$ 1.596	31.92
	$4^{1}/_{2}$	₂ 3.829	76.58		$1\frac{1}{2}$ 1.915	38.30
	5	4.254	85.08		$1\frac{3}{4}$ 2.233	44.66
	$5^{1}/_{2}$	₂ 4.679	93.58		2 2.552	51.04
	6	5.105	102.10		$2^{1}/_{4}$ 2.872	57.44
	7	5.956	119.12		$2\frac{1}{2}$ 3.191	63.82
	8	6.806	136.12		$2\frac{3}{4}$ 3.509	70.18
⁵ / ₁₆ x	$\frac{1}{2}$.531	10.62		3 3.829	76.58
	2/8	.665	13.30		$3\frac{1}{4}$ 4.148	82.96
	$\frac{3}{4}$.798	15.96		$3\frac{1}{2}$ 4.467	89.34
	⁷ / ₈	.931	18.62		4 5.105	102.10
	1	1.064	21.28		$4^{1}/_{2}$ 5.743	114.86
		₄ 1.329			5 6.381	
	$1^{1}/_{2}$	1.594	31.88		$5^{1}/_{2}$ 7.020	140.40
			37.22		6 7.657	153.14
	2	2.127	42.54		7 8.933	178.66
	$2^{1}/_{4}$	₄ 2.393	47.86		8 10.210	204.20
	$2^{1}/_{2}$	2.658	53.16			

Hot Rolled Flats (Continued)

Size	0	Weight	Size In	Weight	Weight
$\frac{\text{Inche}}{1}$		Per 20'	Inches	Per Foot	Per 20'
$^{1}/_{2}$ x	$\frac{3}{4}$ 1.276	25.52		¹ / ₂ 11.699	
	⁷ / ₈ 1.489	29.78		12.762	255.24
	1 1.702	34.04		14.894	297.88
	$1\frac{1}{4}$ 2.127	42.54	8		340.32
	$1\frac{1}{2}$ 2.552	51.04	$ ^{3}/_{4} \times 1$		51.04
	$1\frac{3}{4}$ 2.978	59.56		$\frac{1}{4}$ 3.191	63.82
	2 3.403	68.06	1	$\frac{1}{2}$ 3.829	76.58
	$2\frac{1}{4}$ 3.829	76.58	1	$^{3}/_{4}$ 4.467	89.34
	$2\frac{1}{2}$ 4.254	85.08	2		102.10
	$2\frac{3}{4}$ 4.679	93.58		$\frac{1}{4}$ 5.743	114.86
	3 5.105	102.10		$\frac{1}{2}$ 6.381	127.62
	$3\frac{1}{4}$ 5.530	110.60	2	$3^{3}/_{4}$ 7.020	140.40
	$3\frac{1}{2}$ 5.956	119.12	3	7.657	153.14
	4 6.806	136.12	3	1/2 8.933	178.66
	$4\frac{1}{2}$ 7.657	153.14		10.210	204.20
	5 8.508	170.16	4	¹ / ₂ 11.491	229.82
	$5\frac{1}{2}$ 9.359	187.18	5	12.762	255.24
	6 10.210	204.20	5	$^{1}/_{2}14.038$	280.76
	7 11.911	238.22	6		306.28
	8 13.613	272.26	7	17.867	357.34
⁵ / ₈ x	1 2.127	42.54	8	20.419	408.38
Ũ	$1 \ {}^1/_4 \ 2.658$	53.16	$ ^{7}/_{8} \times 1$	2.978	59.56
	$1\frac{1}{2}$ 3.191	63.82	1	$^{1}/_{4}$ 3.723	74.46
	$1\frac{3}{4}$ 3.723	74.46	1	¹ / ₂ 4.467	89.34
	2 4.254	85.08		5.956	119.12
	$2^{1}/_{4}$ 4.785	95.70	2	¹ / ₂ 7.445	148.90
	$2\frac{1}{2}$ 5.318	106.36	3		178.66
	$2\frac{3}{4}$ 5.850	117.00	3	$\frac{1}{2}10.420$	208.40
	3 6.381	127.62	4	=	238.22
	$3^{1}/_{4}$ 6.913	138.26	4	¹ / ₂ 13.403	268.06
	$3\frac{1}{2}$ 7.445	148.90	5	-	297.88
	4 8.508	170.16	6		357.34
	$4\frac{1}{2}$ 9.572	191.44	7	20.830	416.60
	5 10.640	212.80	8		476.44

Hot Rolled Bar Products

Hot Rolled Flats (Continued)

Size I Inche	0	Weight Per 20'	Size In Inches	Weight Per Foot	Weight Per 20'
1 x	1 ¹ / ₄ 4.254	85.08	$1 \frac{1}{4} x 4$	¹ / ₂ 19.148	382.96
	1 ¹ / ₂ 5.105	102.10	5	21.270	425.40
	1 ³ / ₄ 5.956	119.12	6	25.524	510.48
	2 6.806	136.12	7	29.778	595.56
	2 ¹ / ₄ 7.657	153.14	8	34.032	680.64
	2 ¹ / ₂ 8.508	170.16	$1 \frac{1}{2} x 2$	10.210	204.20
	2 ³ / ₄ 9.359	187.18	2	¹ / ₂ 12.762	255.24
	3 10.210	204.20	3	15.314	306.28
	3 ¹ / ₄ 11.060	221.20	3	¹ / ₂ 17.867	357.34
	3 ¹ / ₂ 11.911	238.22	4	20.419	408.38
	4 13.613	272.26	4	¹ / ₂ 22.972	459.44
	4 ¹ / ₂ 15.314	306.28	5	25.524	510.48
	5 17.016	340.32	6	30.629	612.58
	5 ¹ / ₂ 18.718	374.36	7	35.734	714.68
	6 20.419	408.38	8	40.834	816.76
	7 23.822	476.44	2 x 2	¹ / ₂ 17.016	340.32
	8 27.226	544.52	3	20.419	408.38
$1 /_{4}x$	1 ¹ / ₂ 6.381	127.62	3	¹ / ₂ 23.822	476.44
	1 ³ / ₄ 7.445	148.90	4	27.226	544.52
	2 8.508	170.16	4	¹ / ₂ 30.629	612.58
	2 ¹ / ₄ 9.572	191.44	5	34.032	680.64
	2 1/210.640	212.80	6	40.838	816.76
	3 12.762	255.24	7	47.600	952.00
	3 ¹ / ₂ 14.894	297.88	8	54.451	1089.02
	4 17.816	340.32			

Weights For UM Plates

Size Inch		Wt. Per Foot	Wt. Per 20 Ft.	Size In Inches		Wt. Per Foot	Wt. Per 20 Ft.
$\frac{l}{4}$ x	9	7.66	153.1	$\frac{1}{2}$ x	11	18.72	374.4
1	10	8.51	170.2	_	12	20.42	408.4
	11	9.36	187.2		14	23.82	476.5
	12	10.21	204.2	⁵ / ₈ x	9	19.15	383.0
	14	11.91	238.2	0	10	21.27	425.4
⁵ / ₁₆ x	9	9.57	191.4		12	25.52	510.5
10	10	10.64	212.8		14	29.77	595.5
	12	12.76	255.2	$\frac{3}{4}$ x	9	22.97	459.4
	14	14.89	297.7	-1	10	25.52	510.5
$^{3}/_{8}$ x	9	11.49	229.8		12	30.63	612.6
0	10	12.76	255.2		14	35.74	714.7
	11	14.03	280.6	1 x	9	30.63	612.6
	12	15.31	306.3		10	34.03	680.6
	14	17.86	357.2		12	40.84	816.8
$^{1}/_{2}$ x	9	15.31	306.3		14	47.65	952.9
2	10	17.02	340.4				

Hot Rolled Rounds

					\sim
Size In Inches	Wt. Per Foot	Wt. Per 20 Ft.	Size In Inches	Wt. Per Foot	Wt. Per 20 Ft.
	.094	1.88			608.98
$\frac{3}{_{16}}$.167	1.88 3.34	$3^{3}/_{8}$		654.82
$\frac{1}{4}$			$3^{1/2}$		
$\frac{5}{_{16}}$.261	5.22	$3^{5/8}$		702.46
$\frac{3}{8}$.376	7.52	$3^{3}/_{4}$		751.70
7/ ₁₆	.511	10.22	$3^{7}/_{8}$		802.76
1/2	.669	13.38	4	42.770	855.40
9/ ₁₆	.846	16.92	-	48.275	965.50
⁵ / ₈	1.044	20.88	2	54.131	1082.62
3/4	1.503	30.06	$4^{3}/_{4}$	60.307	1206.14
7/8	2.046	40.92	5	66.823	1336.46
1	2.673	53.46	$5 \frac{1}{4}$	73.669	1473.38
$1 \frac{1}{8}$	3.382	67.64	5 ¹ / ₂	80.856	1617.12
$1 \frac{1}{4}$	4.177	83.54	$5^{3}/_{4}$	88.373	1767.46
$1^{3}/_{8}$	5.054	101.08	6	96.221	1924.42
$1 \frac{1}{2}$	6.014	120.28	$6 \frac{1}{4}$	104.398	2087.96
1 ⁵ / ₈	7.058	141.16	$6^{1}/_{2}$	112.926	2258.52
$1^{3}/_{4}$	8.186	163.72	$6^{3}/_{4}$	121.785	2435.70
$1^{7}/_{8}$	9.397	187.94	7	130.973	2619.46
2	10.690	213.80	$7 \frac{1}{4}$	140.492	2809.84
$2^{1}/_{8}$	12.071	241.42	$7\frac{1}{2}$	150.352	3007.04
$2^{1/4}$	13.533	270.66	$7^{3}/_{4}$	160.541	3210.82
$2^{5/}_{16}$	14.293	285.86	8	171.061	3421.22
$2^{3/8}$		301.48	$8^{1}/_{4}$	181.921	3638.42
$2^{1/2}$	16.706	334.12	-	193.112	3862.24
-	18.417	368.34	-		4092.86
0	20.219		-	216.504	4330.08
-	22.091			228.695	
-	24.053		1	241.227	
	28.237		-	267.342	
<i>v</i> , ₄					

	Но	ot Rolled	d Squar	es	
Size In	Wt. Per	Wt. Per	Size In	Wt. Per	Wt. Per
Inches	Foot	20 Ft.	Inches	Foot	20 Ft.
$^{1}/_{4}$.213	4.26	$1\frac{5}{8}$	8.986	179.72
$5/_{16}$.332	6.64	$1^{3}/_{4}$	10.423	208.46
$^{3}/_{8}$.478	9.56	2	13.310	266.20
7/16	.652	13.04	$2^{1}/_{8}$	15.367	307.34
$1/2^{10}$.851	17.02	$2^{1/_{4}}$	17.229	344.58
5/8	1.329	26.58	$2^{1/2}$	21.270	425.40
$3/_{4}^{\circ}$	1.915	38.30	$2^{3}/_{4}$	25.737	514.74
7/8	2.605	52.10	3	30.629	612.58
1	3.403	68.06	$3^{1}/_{4}$	35.944	718.88
$1 \frac{1}{8}$	4.307	86.14	$3^{1/2}$	41.689	833.78
$1 \frac{1}{4}$	5.318	106.36	4	54.451	1089.02
$1^{3}/_{8}^{1}$	6.434	128.68	$4^{1}/_{2}$	68.915	1378.30
$1 \frac{1}{2}$	7.567	153.14	5	85.080	1701.60

Commercial Quality

Commercial Quality bars are typically produced in grades C1008, C1020, to chemical specifications. Commercial Quality bars are not subject to mechanical property tests. Typical properties are given for reference only. Mill size tolerances apply to all Commercial Quality bars.

Applications

Commercial Quality bars are used in many applications. Among them are structural uses involving moderate cold bending or hot forming, welding, punching, and the production of noncritical parts of buildings, bridges, railway equipment, road building equipment, agricultural equipment and implements, and general machinery.

Hot Rolled Strips

Size I Inche		Weight Per Foot		Size In Inches		eight Foot	Weight Per 20'
¹ / ₈ x	¹ / ₂	0.213	4.26	³ / ₁₆ x	¹ / ₂	0.319	6.38
	5/ ₈	0.266	5.32		5/ ₈	0.398	7.96
	³ / ₄	0.319	6.38		$\frac{3}{4}$	0.478	9.56
	⁷ / ₈	0.372	7.44		⁷ / ₈	0.559	11.18
	1	0.425	8.50		1	0.639	12.78
	1 ¹ /	₈ 0.478	9.56		$1 \frac{1}{8}$	0.718	14.36
	$1^{1}/$	4 0. 5 31	10.62		$1 \frac{1}{4}$	0.798	15.96
	$1^{1/2}$	₂ 0.639	12.78		$1 \frac{1}{2}$	0.957	19.14
	$1^{3}/$	4 0.745	14.90		$1^{3}/_{4}$	1.117	22.34
	2	0.851	17.02		2	1.276	25.52
	$2^{1/2}$	4 0.957	19.14		$2^{1}/_{4}$	1.435	28.70
	$2^{1/2}$	₂ 1.064	21.28		$2^{1/2}$	1.596	31.92
	$2^{3}/$	4 1.170	23.40		$2^{3}/_{4}$	1.755	35.10
	3	1.276	25.52		3	1.915	38.30
	3 ¹ /	₂ 1.489	29.78		$3^{1}/_{2}$	2.233	44.66
	4	1.702	34.04		4	2.552	51.04
	4 ¹ /	₂ 1.915	38.30		4 ¹ / ₂	2.872	57.44
	5	2.127	42.54		5	3.191	63.82
	6	2.552	51.04		6	3.829	76.58
	8	3.403	68.06		8	5.105	102.10
	10	4.254	85.08		10	6.381	127.62
	12	5.105	102.10		12	7.657	153.14

Structural Shapes

Structural shapes are those whose greatest dimension, not including length, is three inches or greater.

Structural Quality products (i.e. 3" and larger) are typically available in a multigrade product that will meet the specifications of the following grades: A36, A529Gr50 & 55, A572Gr50 & 55, A709Gr36 & 50, CAN 44W 50W & 55W, CSA44, 50W, AASHTO M270, M270M-10gr36 Gr50, ASME SA36M-07.

Weldability

When any grade of steel is used in welded construction, procedures must be suitable for the steel and the intended service.

ASTM A36 steel presents no welding problems when using all welding processes. The quality of the welds is generally extremely high for both welds and joints. Welding rod specifications are dependent on welding conditions such as the thickness of the sections to be welded, service requirements and design.

High Strength, Low Alloy grades such as A572 Grade 50 and A992 are weldable with welding techniques suitable for the grade and intended service application.

			Stru	ctural A	ngles	r→ ↓ ·← A ·← B→·
		Size			Weight	Weight
Α		В		Т	Per Foot	Per 40' Bar
3	X	2	X	³ / ₁₆	3.073	122.92
-				1/4	4.104	164.16
				$\frac{5}{16}$	5.005	200.20
				$3/8^{10}$	5.906	236.24
				$1/2^{\circ}$	7.707	308.28
3	Х	$2^{1}/_{2}$	Х	$3/_{16}^{2}$	3.393	135.72
		2		1/	4.504	180.16
				$\frac{5}{16}$	5.605	224.20
				$3/_{8}^{10}$	6.606	264.24
				¹ / ₂	8.508	340.32
3	Х	3	Х	$3/_{16}^{2}$	3.714	148.56
				1/4	4.905	196.20
				$\frac{5}{16}$	6.106	244.24
				³ / ₈	7.207	288.28
				¹ / ₂	9.409	376.36
$3^{1}/_{2}$	Х	$2^{1/2}$	Х	$\frac{3}{16}$	3.393	135.72
-		-		1/	4.905	196.20
				⁵ / ₁₆	6.106	244.24
				³ /°	7.207	288.28
				$\frac{1}{2}$	9.409	376.36
$3^{1}/_{2}$	Х	3	Х	1/	5.405	216.20
-				$\frac{5}{16}$	6.606	264.24
				$3/8^{3}$	7.907	316.28
				$\frac{1}{2}$	10.210	408.40
$3^{1}/_{2}$	Х	$3^{1}/_{2}$	Х	1/4	5.805	232.20
-		-		$\frac{5}{16}$	7.207	288.28
				³ / ₈	8.508	340.32
				1/2	11.110	444.40
4	Х	3	Х	1/4	5.805	232.20
				$5/_{16}^{4}$	7.207	288.28
				³ / ₈	8.508	340.32
				$\frac{1}{2}$	11.110	444.40
				⁵ / ₈	13.613	544.52
4	Х	$3^{1}/_{2}$	Х	1/4	6.206	248.24
		-		$5/_{16}^{1}$	7.707	308.28

			ural	Angles	(Continue	$(ed)^{T} \stackrel{\wedge}{\overset{\leftarrow}{\overset{\wedge}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\bullet$
		Size			Weight	Weight
D		W		Т	Per Foot	Per 40' Bar
4	Х	$3^{1}/_{2}$	Х	³ / ₈	9.109	364.36
		2		1/2	11.911	476.44
4	Х	4	Х	1/4	6.606	264.24
				$5/_{16}^{4}$	8.208	328.32
				3/8	9.809	392.36
				$\frac{1}{2}$	12.812	512.48
				5/8	15.715	628.60
				3/ ₄	18.517	740.68
5	Х	3	Х	1/4	6.606	264.24
				$\frac{5}{_{16}}$	8.208	328.32
				$3/8^{10}$	9.809	392.36
				$\frac{1}{2}$	12.812	512.48
				5/8	15.715	628.60
5	Х	$3^{1}/_{2}$	Х	1/4	7.007	280.28
		2		$\frac{5}{_{16}}$	8.708	348.32
				³ /°	10.410	416.40
				$\frac{1}{2}$	13.613	544.52
				5/8	16.816	672.64
				3/	19.810	792.76
5	Х	5	Х	$\frac{5}{_{16}}$	10.310	412.40
				² /°	12.312	492.48
				$^{7}/_{16}$	14.313	572.52
				$1/_{2}$	16.215	648.60
				⁵ / ₈	20.019	800.76
				3/4	23.622	944.88
6	Х	$3^{1}/_{2}$	Х	$\frac{1}{4}^{4}$	7.907	316.28
		2		$\frac{5}{_{16}}$	9.809	392.36
				$3/_{8}^{10}$	11.711	468.44
				$\frac{1}{2}$	15.314	612.56
				5/。	19.018	760.72
6	Х	4	Х	$5/_{16}^{\circ}$	10.310	412.40
				³ / ₈	12.312	492.48
				7/ ⁸	14.313	572.52

Please Note: Most Structural Angles are stocked in 20', 30', and 40' lengths.

		Struct	ural	Angles (Continue	ed) ^{T→}
		Size			Weight	Weight
D		W		Т	Per Foot	Per 40' Bar
6	X	4	Х	$^{1}/_{2}$	16.215	648.60
				5/8	20.019	800.76
				$3/\frac{3}{4}$	23.622	944.88
6	Х	6	Х	1/4	9.989	399.56
				$\frac{5}{16}$	12.400	500.48
				3/0	14.914	596.56
				7/ ₁₆	17.216	688.64
				$\frac{1}{2}$	19.618	784.72
				5/8	24.223	968.92
				$3/_{4}^{\circ}$	28.727	1149.08
				1^{4}	37.435	1497.40
7	Х	4	Х	³ / ₈	13.613	544.52
				$\frac{7}{16}$	15.700	632.60
				1/2	17.917	716.68
				5/	22.121	884.84
				3/	26.225	1049.00
8	Х	4	Х	$\frac{1}{2}$	19.618	784.72
				$\frac{5}{8}$	24.200	968.00
				$3/_{4}^{3}$	28.727	1149.08
				1	37.435	1497.40
8	Х	6	Х	$^{1}/_{2}$	23.022	920.88
				5/8	28.527	1141.08
				$3/_{4}^{3}$	33.832	1353.28
				1	44.242	1769.68
8	Х	8	Х	¹ / ₂	26.425	1057.00
				5/8	32.731	1309.24
				³ / ₄	38.937	1557.48
				1	51.048	2041.92
9	Х	4	Х	$^{1}/_{2}$	21.320	852.80
				$3/\frac{2}{4}$	31.300	1252.00

Please Note: Most Structural Angles are stocked in 20', 30', and 40' lengths.

	Str	T→ W ¹		
		Size		Weight
D	Lbs. / Foot	W	Т	Per 40' Bar
3	3.5	1.372	.132	140
	4.1	1.410	.170	164
	5.0	1.498	.258	200
	6.0	1.596	.356	240
4	4.5	1.584	.125	180
	5.4	1.584	.184	216
	6.25	1.647	.247	250
	7.25	1.721	.321	290
5	6.7	1.750	.190	268
	9.0	1.885	.325	360
6	8.2	1.920	.200	328
	10.5	2.034	.314	420
	13.0	2.157	.437	520
7	9.8	2.090	.210	392
	12.25	2.194	.314	490
	14.75	2.299	.419	590
8	11.50	2.260	.220	460
	13.75	2.343	.303	550
	18.75	2.527	.487	750
9	13.4	2.433	.233	536
	15.0	2.485	.285	600
	20.0	2.648	.448	800
10	15.3	2.600	.240	612
	20.0	2.739	.379	800
	25.0	2.886	.526	1000
	30.0	3.033	.673	1200
12	20.7	2.942	.282	828
	25.0	3.047	.387	1000
	30.0	3.170	.510	1200
15	33.9	3.400	.400	1356
	40.0	3.520	.520	1600
	50.0	3.716	.716	2000

Please Note: Most Structural Channels are available in 20', 30', 40', 50', and 60' lengths.

	Misc	. Structural	Chann	
		Size		Weight
D	Lbs. / Foot	W	Т	Per 40' Bar
3	7.1	1.938	.312	284
4	13.8	2.500	.500	552
6	6.5	1.850	.155	260
	7.0	1.875	.179	280
	12.0	2.497	.310	480
	15.1	2.941	.316	604
	15.3	3.500	.340	612
	16.3	3.000	.375	652
	18.0	3.504	.379	720
7	19.1	3.452	.352	764
	22.7	3.603	.503	908
8	8.5	1.874	.179	340
	18.7	2.978	.353	748
	20.0	3.025	.400	800
	21.4	3.450	.375	856
	22.8	3.502	.427	912
9	23.9	3.450	.400	956
	25.4	3.500	.450	1016
10	6.5	1.170	.152	260
	8.4	1.500	.170	336
	22.0	3.315	.290	880
	25.0	3.405	.380	1000
	28.5	3.950	.425	1140
	33.6	4.100	.575	1244
	41.1	4.321	.796	1644
12	10.6	1.500	.190	424
	14.3	2.125	.250	572
	31.0	3.670	.370	1240
	35.0	3.765	.465	1400
	40.0	3.890	.590	1600
	45.0	4.010	.710	1800
	50.0	4.135	.835	2000
13	31.8	4.000	.375	1272
	35.0	4.072	.447	1360
	40.0	4.185	.560	1600
	50.0	4.412	.787	2000
18	42.7	3.950	.450	1708
	45.8	4.000	.500	1832
	51.9	4.100	.600	2076
	58.0	4.200	.700	2320

Wide Flange Beams

		١⊼
T→	÷	Ь
	L	,↓
	ν.	-

									i ← VV →i	
	S	ize				Siz	ze			
	Ι	.bs/Ft	D	W	Т		os/Ft	D	W	Т
4	х	13	4.16	4.060	.280	10 x	33	9.73	7.960	.290
							39	9.92	7.985	.315
5	х	16	5.01	5.000	.240		45	10.10	8.020	.350
		19	5.15	5.030	.270	10 x	49	9.98	10.000	.340
							54	10.09	10.030	.370
6	х	8.5	5.83	3.940	.170		60	10.22	10.080	.420
		9	5.90	3.940	.170		68	10.40	10.130	.470
		12	6.03	4.000	.230		77	10.60	10.190	.530
		16	6.28	4.030	.260		88	10.84	10.265	.605
,							100	11.10	10.340	.680
6	х	15	5.99	5.990	.230		112	11.36	10.415	.755
		20	6.20	6.020	.260		. (
		25	6.38	6.080	.320	12 x	14	11.91	3.970	.200
0		4.0	- 00	2 2 (2	1=0		16	11.99	3.990	.220
8	Х	10	7.89	3.940	.170		19	12.16	4.005	.235
		13	7.99	4.000	.230		22	12.31	4.030	.260
		15	8.11	4.015	.245	12	26	10.00	6 400	220
0		10	014	5 250	220	12 x	26 20	12.22	6.490	.230 .260
8	х	18 21	8.14 8.28	5.250 5.270	.230 .250		30 35	12.34 12.50	6.520 6.560	.200 .300
		21	0.20	9.270	.290		55	12.90	0.900	.300
8	х	24	7.93	6.495	.245	12 x	40	11.94	8.005	.295
		28	8.06	6.535	.285		45	12.06	8.045	.335
							50	12.19	8.080	.370
8	х	31	8.00	7.995	.285					
		35	8.12	8.020	.310	12 x	53	12.06	9.995	.345
		40	8.25	8.070	.360		58	12.19	10.010	.360
		48	8.50	8.110	.400					
		58	8.75	8.220	.510	12 x	65	12.12	12.000	.390
		67	9.00	8.280	.570		72	12.25	12.040	.430
							79	12.38	12.080	.470
10) x	12	9.87	3.960	.190		87	12.53	12.125	.515
		15	9.99	4.000	.230		96	12.71	12.160	.550
		17	10.11	4.010	.240		106	12.89	12.220	.610
		19	10.24	4.020	.250		120	13.12	12.320	.710
4.0		22	10.1=		2/0		136	13.41	12.400	.790
10) x	22	10.17	5.750	.240		152	13.71	12.480	.870
		26 20	10.33	5.770	.260		170	14.03	12.570	.960
		30	10.47	5.810	.300		190	14.38	12.670	1.060
						I	210	14.71	12.790	1.180

Wide Flange Beams (Continued)

				-				·+`	W→ı
	Size			_		Size	_		_
	Lbs/H	Ft D	W	Т		Lbs/Ft	D	W	T
	230	15.05	12.895	1.285		398	18.29	16.590	1.770
	252	15.41	13.005	1.395					
	279	15.85	13.140	1.530	14	x 426	18.67	16.695	1.875
	305	16.32	13.235	1.625		455	19.02	16.835	2.015
	336	16.82	13.385	1.775		500	19.60	17.010	2.190
						550	20.24	17.200	2.380
14 x		13.74	5.000	.230		605	20.92	17.415	2.595
	26	13.91	5.025	.255		665	21.64	17.650	2.830
						730	22.42	17.890	3.070
14 x		13.84	6.730	.270					
	34	13.98	6.745	.285	16		15.69	5.500	.250
	38	14.10	6.770	.310		31	15.88	5.525	.275
14 x	43	13.66	7.995	.305	16	x 36	15.86	6.985	.295
	48	13.79	8.030	.340		40	16.01	6.995	.305
	53	13.92	8.060	.370		45	16.13	7.035	.345
						50	16.26	7.070	.380
14 x	61	13.89	9.995	.375		57	16.43	7.120	.430
	68	14.04	10.035	.415					
	74	14.17	10.070	.450	16	x 67	16.33	10.235	.395
	82	14.31	10.130	.510		77	16.52	10.295	.455
						89	16.75	10.365	.525
14 x	90	14.02	14.520	.440		100	16.97	10.425	.585
	99	14.16	14.565	.485					
	109	14.32	14.605	.525	18		17.70	6.000	.300
	120	14.48	14.670	.590		40	17.90	6.015	.315
	132	14.66	14.725	.645		46	18.06	6.060	.360
14 x	145	14.78	15.500	.680	18	x 50	17.99	7.495	.355
	159	14.98	15.565	.745		55	18.11	7.530	.390
	176	15.22	15.650	.830		60	18.24	7.555	.415
	193	15.48	15.710	.890		65	18.35		.450
	211	15.72	15.800	.980		71	18.47	7.635	.495
	233	16.04	15.890	1.070					
	257	16.38	15.995	1.175	18	x 76	18.21	11.035	.425
	283	16.74	16.110	1.290		86	18.39	11.090	.480
	311	17.12	16.230	1.410		97	18.59	11.145	.535
	342	17.54	16.360	1.540		106	18.73	11.200	.590
	370	17.92	16.475	1.655		119	18.97	11.265	.655

Wide Flange Beams (Continued)

						· ~	W→	
Size				Size				
Lbs/F	t D	W	Т	Lbs/Ft	D	W	Т	
130	19.25	11.160	.670					
143	19.49	11.220	.730	24 x 104	24.06	12.750	.500	
158	19.72	11.300	.810	117	24.26	12.800	.550	
175	20.04	11.375	.890	131	24.48	12.855	.605	
192	20.35	11.455	.960	146	24.74	12.900	.650	
211	20.67	11.555	1.060	162	25.00	12.955	.705	
234	21.06	11.650	1.160	176	25.24	12.890	.750	
258	21.46	11.770	1.280	192	25.47	12.950	.810	
283	21.85	11.890	1.400	207	25.71	13.010	.870	
311	22.32	12.005	1.520	229	26.02	13.110	.960	
				250	26.34	13.185	1.040	
21 x 44	20.66	6.500	.350	279	26.73	13.305	1.160	
50	20.83	6.530	.380	306	27.13	13.405	1.260	
57	21.06	6.555	.405	335	27.52	13.520	1.380	
21 x 48	20.62	8.140	.350	370	27.99	13.660	1.520	
55	20.80	8.220	.375					
62	20.99	8.240	.400	27 x 84	26.71	9.960	.460	
68	21.13	8.270	.430	94	26.92	9.990	.490	
73	21.24	8.295	.455	102	27.09	10.015	.515	
83	21.43	8.355	.515	114	27.29	10.070	.570	
93	21.62	8.420	.580	129	27.63	10.010	.610	
21 x 101	21.36	12.290	.500	27 x 146	27.38	13.965	.605	
111	21.51	12.340	.550	161	27.59	14.020	.660	
122	21.68	12.390	.600	178	27.81	14.085	.725	
132	21.83	12.440	.650	194	28.11	14.035	.750	
147	22.06	12.510	.720	217	28.43	14.115	.830	
166	22.48	12.420	.750	235	28.66	14.190	.910	
182	22.72	12.500	.830	258	28.98	14.270	.980	
201	23.03	12.575	.910	281	29.29	14.350	1.060	
				307	29.61	14.445	1.160	
24 x 55	23.57	7.005	.395	336	30.00	14.550	1.260	
62	23.74	7.040	.430	368	30.39	14.665	1.380	
- / /								
24 x 68	23.73	8.965	.415	30 x 90	29.53	10.400	.470	
76	23.92	8.990	.440	99	29.65	10.450	.520	
84	24.10	9.020	.470	108	29.83	10.475	.545	
94	24.31	9.065	.515	116	30.01	10.495	.565	
103	24.53	9.000	.550	124	30.17	10.515	.585	
				1				

	Wide Flange Beams (Continued)							
Size			Size					
Lbs/F	t D	W	Т	Lbs/Ft D W T				
132	30.31	10.545	.615	262 36.85 16.550 .840				
148	30.67	10.480	.650	282 37.11 16.595 .885				
				302 37.33 16.655 .945				
30 x 173	30.44	14.985	.655	330 37.67 16.630 1.020				
191	30.68	15.040	.710	361 37.99 16.730 1.120				
211	30.94	15.105	.755	395 38.37 16.830 1.220				
235	31.30	15.055	.830	441 38.85 16.965 1.360				
261	31.61	15.155	.930	487 39.33 17.105 1.500				
292	32.01	15.255	1.020	529 39.79 17.220 1.610				
326	32.40	15.370	1.140	652 41.05 17.575 1.970				
357	32.80	15.470	1.240					
391	33.19	15.590	1.360	40 x 149 38.20 11.810 .630				
				167 38.59 11.810 .650				
33 x 118	32.86	11.480	.550	183 38.98 11.810 .650				
130	33.09	11.510	.580	211 39.37 11.810 .750				
141	33.30	11.535	.605	235 39.69 11.890 .830				
152	33.49	11.565	.635	264 40.00 11.930 .960				
169	33.82	11.500	.670	278 40.16 11.970 1.025				
33 x 201	33.68	15.745	.715	294 40.39 12.010 1.060				
221	33.93	15.805	.775	327 40.79 12.130 1.180				
241	34.18	15.860	.830	331 40.79 12.165 1.220				
263	34.53	15.805	.870	392 41.57 12.360 1.415				
291	34.84	15.905	.960	40 x 199 38.67 15.750 .650				
318	35.16	15.985	1.040	215 38.98 15.750 .650				
354	35.55	16.100	1.160	249 39.38 15.750 .750				
387	35.95	16.200	1.260	277 39.69 15.830 .830				
				297 39.84 15.825 .930				
36 x 135	35.55	11.950	.600	324 40.16 15.910 1.000				
150	35.85	11.975	.625	362 40.55 16.020 1.120				
160	36.01	12.000	.650	372 40.63 16.065 1.160				
170	36.17	12.030	.680	397 40.95 16.120 1.220				
182	36.33	12.075	.725	431 41.26 16.220 1.340				
194	36.49	12.115	.765	503 42.05 16.415 1.535				
210	36.69	12.180	.830	593 42.99 16.690 1.790				
232	37.12	12.120	.870					
256	37.43	12.215	.960	44 x 230 42.91 15.750 .710				
0	20		.,	262 43.31 15.750 .785				
36 x 231	36.49	16.470	.760	290 43.62 15.825 .865				
247	36.67	16.510	.800	335 44.02 15.945 1.025				
	20.07	_ 3.9 10						

	St	andard (I)	Beams	T⇒ € D ↓ ↓ ₩→!
		Size		Weight
D	Lbs. / Foot	W	Т	Per 40' Bar
3	5.70	2.330	.170	228
	7.50	2.509	.349	300
4	7.70	2.663	.193	308
	9.50	2.796	.326	380
5	10.00	3.004	.214	400
6	12.50	3.332	.232	500
	17.25	3.565	.465	690
8	18.40	4.001	.271	736
	23.00	4.171	.441	920
10	25.40	4.661	.311	1016
	35.00	4.944	.594	1400
12	31.80	5.000	.350	1272
	35.00	5.078	.428	1400
	40.80	5.252	.462	1632
	50.00	5.477	.687	2000
15	42.90	5.501	.411	1716
	50.00	5.640	.550	2000
18	54.70	6.001	.461	2188
	70.00	6.251	.711	2800
20	66.00	6.255	.505	2640
	75.00	6.385	.635	3000
	86.00	7.060	.660	3440
	96.00	7.200	.800	3840
24	80.00	7.000	.500	3200
	90.00	7.125	.625	3600
	100.00	7.245	.745	4000
	106.00	7.870	.620	4240
	121.00	8.050	.800	4840

Structural Shapes

STRUCTURAL SHAPES

	Mi	$T \rightarrow \underbrace{\leftarrow}_{\leftarrow} D$		
		Size		Weight
D	Lbs. / Foot	W	Т	Per 40' Bar
3	2.9	2.250	.090	116
4	3.2	2.250	.092	128
4	3.45	2.250	.092	138
4	4.08	2.250	.115	163
4	6.0	3.800	.130	240
5	18.9	5.003	.316	756
6	3.7	2.000	.098	148
6	4.4	1.844	.114	176
8	6.2	2.281	.129	248
8	6.5	2.281	.135	260
10	7.5	2.688	.130	300
10	8.0	2.690	.141	320
10	9.0	2.690	.157	360
12	10.0	3.250	.149	400
12	10.8	3.065	.160	432
12	11.8	3.065	.177	472
12.5	11.6	3.500	.155	464
12.5	12.4	3.750	.155	496

		$ \begin{array}{c} T \\ \uparrow \\ \uparrow \\ \uparrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow$		
		Size		Weight
D	Lbs. / Foot	W	Т	Per 40' Bar
8	36.0	8.155	.445	1440
10	42.0	10.075	.415	1680
10	57.0	10.225	.565	2280
12	53.0	12.045	.435	2120
12	63.0	12.125	.515	2520
12	74.0	12.215	.605	2960
12	84.0	12.295	.685	3360
14	73.0	14.585	.505	2920
14	89.0	14.695	.615	3560
14	102.0	14.785	.705	4080
14	117.0	14.885	.805	4680

Tubing Products

The steel for square, rectangular and round structural tubing is produced to a flat strip that is cold formed into the final shape and electric resistance welded. Structural tubing is manufactured to the chemical and mechanical requirements of ASTM A-500 Grade A, ASTM A-500 Grade B, A-500 Grade C, and A1085. Some ornamental sizes of square, rectangular and round tubing are made to the chemical requirements of ASTM A-513.

Applications

Hollow Structural Tubing offers maximum strength and compactness with low cost design features for general building construction. These carbon steel square and rectangular sections can be used as columns, posts or spandrel beams, and in complete load bearing panels, window walls, and entry structures.

	A500 Grade B	A500 Grade C	A1085
Manufacture Process	Cold Formed Welded	Cold Formed Welded	Cold Formed Welded
Max Perimeter	88"	88"	88"
Thickness Range	less than .875"	less than .875"	.148"-/875"
Yield Rounds Shapes	42k min 46k min	46k min 50k min	50k min 70k max 50k min 70k max
Tensile Rounds Shapes	58k min 58k min	62k min 62k min	65k min 65k min
Wall Thickness	plus or minus 10%	plus or minus 10%	minus 5% to plus 10%
Mass Tolerance	N/A	N/A	-3.50%
Corner Radius	no more than 3T max	no more than 3T max	t= to or less than .40" 1.6t to 3.0t t greater than .40" 1.8t to 3.0t
CVN	N/A	N/A	25 ft lbs @ 40 Deg F
Elongation min 2"	23%	21%	21%

A500/A1085 Comparison

Workability and Weldability

Hollow Structural Tubing can be subjected to the usual fabricating operations. The ductility of tubing products is good. It bends well, flattens, cuts, punches, flares and flanges easily and can be welded by the commonly employed techniques and practices.

Availability of Lengths

Ornamental Tubing is generally available in 20' and 24' lengths. Structural Tubing is generally available in 20', 24', 30', 32', 34', 40', 48', 56' and 60' lengths. Call for availability of particular sizes and lengths.

	Square & Rectangular Mechanical Tubing								
Outside	Wt. /	C	outside		Wall	Wt. /			
Dims.	Thickness	Foot	Dims.		T	hickness	Foot		
$\frac{1}{2}$ x $\frac{1}{2}$	x .048	.301				.060	.981		
	.060	.362				.075	1.200		
$\frac{5}{8}$ x $\frac{5}{8}$	x .048	.367				.083	1.318		
	.060	.442				.090	1.443		
$\frac{3}{4}$ x $\frac{3}{4}$	x .048	.457				.120	1.846		
	.060	.552	2	x 1	х	.060	1.163		
	.075	.690				.075	1.455		
	.083	.753				.083	1.602		
	.090	.800				.090	1.716		
	.120	1.029				.120	2.254		
1 x 1	x .048	.629	2	x1 1/	2 X	.060	1.370		
	.060	.763				.075	1.694		
	.075	.945				.090	2.011		
	.083	1.036				.120	2.663		
	.090	1.115	2^{1}	$/_{2} \times 1$	х	.120	2.663		
	.120	1.437	2^{1}	$/_{2} x1^{1}/_{2}$	х	.060	1.564		
$1 \frac{1}{4} \times 1 \frac{1}{4}$.807				.075	1.945		
	.060	.981				.090	2.316		
	.075	1.200				.120	2.940		
	.083	1.318	2	x 2	х	.060	1.564		
	.090	1.443				.075	1.966		
	.120	1.846				.083	2.143		
$1 \frac{1}{2} \times 1 \frac{1}{2}$.956				.090	2.316		
	.060	1.163				.120	3.050		
	.075	1.455	3	x 1	х	.060	1.564		
	.083	1.602				.075	1.945		
	.090	1.716				.083	2.166		
1 2/ 1 2/	.120	2.254				.090	2.316		
$1 \frac{3}{4} \times 1 \frac{3}{4}$		1.370	2	11/		.120	2.940		
	.083	1.884	3	$x1 ^{1}/2$	2 X	.060	1.779		
	.090	2.011				.083	2.448		
1 1/	.120	2.663	2	0		.120	3.479		
1 x $\frac{1}{2}$.552	3	x 2	Х	.083	2.756		
11/ 1/	.075	.679	4	1 1/		.120	3.890 4 202		
$1 \frac{1}{2} \times \frac{1}{2}$.763	4	x1 ¹ /	-	.120	4.292		
$1 \frac{1}{2} \times \frac{3}{4}$.879	4	x 2	х	.083	3.296		
	.075	1.072				.090	3.518		
	.083	1.176				.120	4.700		
11/ 1	.120	1.640							
$1 \frac{1}{2} \times 1$	x .048	.800							

Round Mechanical Tubing

						V
O	utside	Wt. /	Wt. /	Outside	Wt. /	Wt. /
I	Dims.	Foot	20'	Dims.	Foot	20'
$^{1}/_{2}$	x.048	.236	4.72	1 ¹ / ₄ x.090	1.115	22.30
	.060	.282	5.64	.120	1.448	28.96
⁵ / ₈	x.048	.301	6.02	$1 \frac{1}{2}$ x.060	.923	18.46
	.060	.362	7.24	.083	1.256	25.12
	.083	.481	9.62	.090	1.355	27.10
³ / ₄	x.049	.367	7.34	.120	1.769	35.38
	.060	.442	8.84	$1^{3}/_{4}$ x.060	1.083	21.66
	.083	.591	11.82	.083	1.478	29.56
	.090	.634	12.68	.090	1.596	31.92
7/8	x.048	.432	8.64	.120	2.100	42.00
	.060	.552	11.04	2 x.060	1.243	24.86
	.083	.702	14.04	.083	1.699	33.98
1	x.049	.498	9.96	.090	1.836	36.72
	.060	.602	12.04	.120	2.409	48.18
	.075	.741	14.82	$2^{1}/_{2}$ x.048	1.283	25.66
	.083	.813	16.26	.060	1.564	31.28
	.090	.875	17.50	.083	2.143	42.86
	.120	1.128	22.56	.120	3.050	61.00
$1^{1}/_{4}$	x.048	.629	12.58	3 x.060	1.884	37.68
	.060	.763	15.26	.090	2.797	55.94
	.083	1.034	20.68	.120	3.619	73.82

Square Structural Tubing

	_					
Outside	Wall	Wt. /	Ou	ıtside	Wall	Wt. /
Dims.	Thickness	Foot	D	ims.	Thickness	Foot
$1 \frac{1}{4} \times 1 \frac{1}{4}$	x .188 2	2.40	6	x 6	x .500	35.24
$1 \frac{1}{2} \times 1 \frac{1}{2}$	x .188 🔮	3.23			.625	42.30
		3.70	7	x 7	x .188	17.08
2 x 2 x		4.32			.250	22.42
		5.41			.313	27.59
		5.32			.375	32.58
$2 \frac{1}{2} \times \frac{2}{2} \times \frac{1}{2} \times \frac{1}{2}$	x .090 2	2.979			.500	42.05
		3.89			.625	50.76
		5.59	8	x 8	x .188	19.63
		7.11			.250	25.82
	.313 8	8.45			.313	31.84
3 x 3 x		4 .70			.375	37.69
		5.87			.500	48.85
	.250 8	8.81			.625	59.32
	.313 10	0.58	9	x 9	x .250	29.23
	.375 11	1.75			.313	36.10
$3^{1}/_{2} \times 3^{1}/_{2} \times 3^{1}/_{2}$	x .120 4	5.52			.375	42.79
	.188 8	8.15			.500	55.66
		0.51			.625	67.82
		2.70	10	x 10		24.75
		4.71			.250	32.63
4 x 4 x		5.34			.313	40.35
		9.42			.375	47.90
		2.21			.500	62.46
		4.83			.625	76.33
		7.27	12	x 12		39.43
		1.63			.313	48.86
$4 \frac{1}{2} \times 4 \frac{1}{2}$	x .120	7.31			.375	58.10
1 / 2 11 / 2 1	.188 10	0.70			.500	76.07
		3.91			.625	93.34
		5.98	14	x 14		57.36
		9.82	11	ΛΠ	.375	68.31
5 x 5 x		7.84			.500	89.68
		1.97				110.23
		5.62	16	x 16		65.87
		9.08	10	л 10	.375	78.52
		2.37				103.30
		3.43				105.30
51/x51/x	x .125	9.01	18	x 18		116.91
$5 \frac{1}{2} x5 \frac{1}{2} x$			10	л 10		144.39
		1.74				
		3.30				171.16
		7.32	20	w 20	.0/0	197.24
		1.22	20	x 20		130.52
		4.93				161.40
6 . (1.84				191.58
6 x 6 x		4.53	22	00		221.06
		9.02	22	x 22		212.00
		3.34			.8/5	244.88
	.375 27	7.48				

Rectangular Structural Tubing

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					_	\mathbf{N}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Outside	Wall V	Wt. / 0	Outside	Wall	Wt. /
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dims.	Thickness I	Foot	Dims.	Thickness	Foot
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2}$ $\frac{1}{2}$ x1 $\frac{1}{2}$	x .188 4	.32		.188	11.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.250 5	.41		.250	15.62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 $x1^{1/2}$	x .188 4	.96		.313	19.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3×2^{2}	x .188 5	.59			22.37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				x 3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3^{1}/_{2} \times 1^{1}/_{2}$	x .188 5				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3^{1/2} x 2^{1/2}$	x .188 7				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2 2	.250 8				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 x1 $^{1}/_{2}$			x 4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4×2^{2}	x .188 6				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4 x2^{1/2}$	x .120 5				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4×3^{2}	x .120 5		x 5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U U			>		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 x 2			x 2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 x 3			x 3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) A J			A J		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				v 4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 x 4			лт		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				v 6		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 v 2			л О		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 X Z					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 X 3) X 2		
.31316.9610x3x.18815.80.37519.82.25020.72.50025.0010x4x.18817.08						
.375 19.82 .500 25.00 10 x 4 x .188 17.08)		
.500 25.00 10 x 4 x .188 17.08) X 3		
) /		
<u>0 X 4 X .120 /.9/ .250 22.42</u>	6 4) X 4		
	<u>v x 4</u>	x .120 /	.9/		.250	22.42

Tubing Products

Rectangular Structural Tubing (Continued)

0	utsi	de		Wall	Wt. /		ıtsid			Wall	Wt. /
I	Dim	s.	Т	hickness	Foot	D	Dims.			ickness	Foot
				.313	27.59					.313	36.10
				.375	32.58					.375	42.79
				.500	42.05					.500	55.66
				.625	50.77	14	х	6	х	.250	32.63
10	х	5	х	.188	18.35					.313	40.35
				.250	24.12					.375	47.90
				.313	29.72					.500	62.46
				.375	35.14	14	х	10	х	.313	48.86
				.500	45.40					.375	58.10
10	х	6	х	.188	19.62					.500	76.07
				.250	25.82					.625	93.25
				.313	31.84	16	х	4	х	.313	40.35
				.375	37.69					.375	47.90
				.500	48.85					.500	62.46
				.625	59.32	16	х	8	х	.250	40.84
10	х	8	х	.188	22.18					.313	48.86
				.250	29.23					.375	58.10
				.313	36.10					.500	76.07
				.375	42.79					.625	93.30
				.500	55.66	16	х	12	Х	.313	57.36
12	Х	2	Х	.188	17.08					.375	68.31
				.250	22.42					.500	89.68
12	х	3	х	.188	18.35	18	х	6	Х	.250	39.43
				.250	24.12					.313	48.86
				.313	29.72					.375	58.10
12	Х	4	х	.188	19.63					.500	76.07
				.250	25.82			,		.625	93.34
				.313	31.84	20	х	4	Х	.313	48.86
				.375	37.69					.375	58.10
				.500	48.85					.500	76.07
10				.625	59.32			~		.625	97.72
12	Х	6	х	.188	22.18	20	х	8	х	.313	57.36
				.250	29.23					.375	68.31
				.313	36.10					.500	89.68
				.375	42.79	20		10			110.23
10		0		.500	55.66	20	х	12	X		65.87
12	х	8	х	.250	32.63					.375	
				.313	40.35						103.30
				.375	47.90						127.00
				.500	63.97 76 33	24	v	12	v		150.75 116.91
12	37	10	¥7	.625 .250	76.33 36.03	<u> </u>	х	14	л		144.39
14	х	10	х		50.05 44.60						144.39 171.16
12	v	10	v	.313 .375	44.00 53.00					./)0]	1,1,10
14	А	10	л	.575	69.27						
14	\mathbf{v}	4	х	.300	29.23						
14	Х	4	х	.230	49.43	1					

Round Structural Tubing

								Ŭ
OD	Pipe Sized	l Schedule	Wall	WPF	OD	Pipe Sized Schedule	Wall	WPF
3			0.188	3.87	6.625	6	0.156	10.79
			0.125	5.64			0.188	12.92
			0.250	7.34			0.250	17.02
			0.313	8.98		40	0.280	18.99
							0.313	21.04
3.5	3	10	0.120	4.33			0.375	25.03
			0.188	6.65		80	0.432	28.57
		40	0.216	7.58			0.500	32.71
			0.250	8.68		120	0.562	36.42
		80	0.300	10.25				
			0.313	10.64	7		0.188	13.68
							0.250	18.04
4	3.5	10	0.120	4.97			0.313	22.35
			0.188	7.66			0.375	26.56
		40	0.226	9.11			0.500	34.74
			0.250	10.02				
			0.313	12.33	8.625	8	0.188	16.94
		80	0.318	12.51		20	0.250	22.36
			0.375	14.53			0.313	27.79
						40	0.322	28.58
4.5	4	10	0.120	5.61			0.375	33.07
			0.188	8.66		80	0.500	43.43
		40	0.237	10.79				
			0.250	11.35	9.625	9	0.188	18.95
			0.313	13.96			0.250	25.06
		80	0.337	14.98			0.313	31.13
			0.375	16.52		40	0.342	33.94
							0.375	37.08
5			0.125	6.51		XH	0.500	48.77
			0.188	9.67			0.625	60.13
			0.250	12.68				
			0.313	15.67	10		0.250	26.032
			0.375	18.52	10 -5	10	0.400	24.24
			0.125	- 10	10.75	10	0.188	21.21
5.5			0.125	7.18		20	0.250	28.06
			0.188	10.67		40	0.313	34.89
			0.250	14.02		40	0.365	40.52
			0.313	17.34		VU	0.375	41.59 54 70
			0.375	20.53		XH 80	0.500	54.79
= = 62	E	10	0 1 25	7.26		80	0.593	64.33
5.563	5	10	0.125 0.188	7.26 10.79			0.625	67.65
					11 75	11	0.250	20 72
		40	0.250 0.258	14.19 14.62	11.75	11	0.250 0.313	30.73 38.23
		40	0.238	17.55		40	0.375	38.23 45.56
		80	0.375	20.78		XH	0.500	60.08
		80	0.500	20.78		ЛП	0.625	
			0.900	27.00			0.023	74.33
6			0.125	7.85	12.75	12 20	0.250	33.41
			0.188	11.68		-	0.313	41.61
			0.250	15.35		STD	0.375	49.61
			0.313	19.02		40	0.406	53.58
			0.375	22.53		XH	0.500	65.48
					1			

Round Structural Tubing (Continued)

OD	Pipe Sized	Schedule	Wall	WPF	OD	Pipe Sized	Schedule	Wall	WPF
12.75	12	60	0.562	73.22	16	16	10	0.219	36.91
		80	0.687	88.51				0.250	42.09
			0.625	81.01				0.313	52.44
							STD	0.375	62.64
13.375			0.250	35.04			XH	0.500	82.85
			0.313	43.67				0.625	102.72
			0.375	52.07					
			0.500	68.76	18	18		0.250	47.44
			0.625	85.11				0.313	59.02
								0.375	70.65
14	14	10	0.250	36.71			XH	0.500	93.54
			0.313	45.75				0.562	104.76
			0.375	54.62				0.625	116.09
		STD	0.437	63.36					
		40	0.500	72.16	20	20		0.250	52.78
		XH	0.625	89.36				0.313	65.87
								0.375	78.67
								0.406	85.04
							XH	0.500	104.23
								0.625	129.45
					I				

Note: Many Structural Sizes are available in 21', 24', 30' 34', & 40' Lengths. All weights and dimensions are nominal. Permissible variation in weight is 5% above or below.

Pipe Products

Standard, Continuous Weld, Electric Weld or Seamless

Pipe is generally available with Plain Ends which are square cut, Threaded and Coupled Ends and with Beveled Ends.

Scope

The term "pipe" covers black and hot dipped galvanized, welded and seamless in nominal pipe sizes 1/8 through 26 inches with average nominal wall thickness as given in the following pages. Pipe ordered to this specification is intended for mechanical and pressure applications and is also acceptable for ordinary uses in steam, water, gas and air lines. It is suitable for welding and suitable for some forming operations.

Manufacture

The weld seam of electric-resistance welded pipe in Grade B shall be heat treated after welding to a minimum of 1000° (540°C) so that no untempered martensite remains, or otherwise processed in such a manner that no untempered martensite remains. All pipe sold under this specification must meet ASTM testing requirements to assure proper application.

Strength Requirements

-	_	
Seamless Or Electric Weld	Tensile Strength (P.S.I.)	Yield Strength (P.S.I.)
A53 Grade A	48,000 Min.	30,000 Min.
A53 Grade B	60,000 Min.	35,000 Min.
A500 Grade A	45,000 Min.	33,000 Min.
A500 Grade B	58,000 Min.	46,000 Min.

Note: Many Structural Sizes are available in 21', 24', 30', 34', & 40' Lengths. All weights and dimensions are nominal. Permissible variation in weight is 5 % above or below.

Gauge Pipe

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pipe Size	O.D. WT/FT	14GA	12GA	10GA	7GA	3GA
							<u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	1.00					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1						
	5-0D	5.00					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) OD	9.00					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6-0D	6.00					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-010	0.00					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	6.625	1.770				250
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0.02)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7.00	7.00					1/.02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	/-OD	/.00					
	<u>0 0D</u>	0.00	070				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8-OD	8.00					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0 (25	0.084				250
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	8.025					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10.00	40.00					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-OD	10.00					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	10.75					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12-OD	12.00					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	12.75					
16.17 19.84 27.73 36.71 16 16.00 $.109$ $.134$ $.188$ $.250$ 18.49 22.70 31.78 42.05 18 18.00 $.109$ $.134$ $.188$ $.250$ 20.82 25.56 35.76 47.39 20 20.00 $.134$ $.188$ $.250$ 22 22.0 $.134$ $.188$ $.250$ 22 22.0 $.134$ $.188$ $.250$ 24 24.00 $.134$ $.188$ $.250$ 24 26.00 $.134$ $.188$ $.250$ 31.29 43.79 58.07 24 24.00 $.134$ $.188$ $.250$ 30 30.00 $.134$ $.188$ $.250$ 30 30.00 $.134$ $.188$ $.250$ 42.74 59.85 79.43 36 36 36.00 $.134$ $.188$ $.250$ 42 42.00 $.188$ $.250$ 442.74 59.85 79.43 36 36 36.00 $.188$ $.250$ 442.74 59.85 79.43 36 36.00 $.188$ $.250$ 48 48.00 $.188$ $.250$ 83.95 111.5 $.188$ $.250$ 84 48.00 $.188$ $.250$				14.71	18.05	25.22	33.38
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	14.00					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				16.17	19.84	27.73	36.71
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	16.00		.109	.134	.188	.250
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				18.49	22.70	31.78	42.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	18.00		.109	.134	.188	.250
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				20.82	25.56	35.76	47.39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	20.00			.134	.188	.250
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						39.78	
$ \begin{array}{c c c c c c c c } \hline 31.29 & 43.79 & 58.07 \\ \hline 24 & 24.00 & .134 & .188 & .250 \\ \hline 34.15 & 47.81 & 63.41 \\ \hline 26 & 26.00 & .134 & .188 & .250 \\ \hline & & & & & & & & & & & & \\ \hline & & & &$	22	22.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
34.15 47.81 63.41 26 26.00 .134 .188 .250 37.01 51.82 68.75 30 30.00 .134 .188 .250 42.74 59.85 79.43 36 36.00 .188 .250 42 42.00 .188 .250 48 48.00 .188 .250	24	24.00					
26 26.00 .134 .188 .250 37.01 51.82 68.75 30 30.00 .134 .188 .250 42.74 59.85 79.43 36 36.00 .188 .250 42 42.00 .188 .250 48 48.00 .188 .250		- 1.00					
37.01 51.82 68.75 30 30.00 .134 .188 .250 42.74 59.85 79.43 36 36.00 .188 .250 71.90 95.45 42 42.00 .188 .250 48 48.00 .188 .250	26	26.00					
30 30.00 .134 .188 .250 42.74 59.85 79.43 36 36.00 .188 .250 71.90 95.45 42 42.00 .188 .250 83.95 111.5 48 48.00 .188 .250	20	20.00					
42.74 59.85 79.43 36 36.00 .188 .250 42 42.00 .188 .250 48 48.00 .188 .250	30	30.00					
36 36.00 .188 .250 71.90 95.45 42 42.00 .188 .250 83.95 111.5 48 48.00 .188 .250	50	J0.00					
71.90 95.45 42 42.00 .188 .250 83.95 111.5 48 48.00 .188 .250	26	36.00			140,/1		
42 42.00 .188 .250 83.95 111.5 48 48.00 .188 .250	90	90.00					
83.95 111.5 48 48.00 .188 .250	40	(2.00					
48 48.00 .188 .250	42	42.00					
	40	(0.00					
96.00 127.5	48	48.00					
						96.00	127.5

Pipe Size	O.D. WT/FT	5	10	20	30	40	Std.	60
1/8	.405	.035	.049			.068	.068	
1/0	.10)	.14	.19			.000	.000	
1/4	.540	.049	.065			.088	.088	
-/ -	., 10	.26	.33			.42	.42	
3/8	.675	.049	.065			.091	.091	
0, 0	, 5	.33	.42			.56	.56	
1/2	.840	.065	.083			.109	.109	
,		.54	.67			.85	.85	
3/4	1.050	.065	.083			.113	.113	
		.68	.86			1.13	1.13	
1	1.315	.065	.109			.133	.133	
		.87	1.40			1.68	1.68	
1-1/4	1.660	.065	.109			.140	.140	
		1.11	1.81			2.27	2.27	
1-1/2	1.900	.065	.109			.145	.145	
		1.27	2.09			2.72	2.72	
2	2.375	.065	.109			.154	.154	
		1.60	2.64			3.65	3.65	
2-1/2	2.875	.083	.120			.203	.203	
		2.48	3.53			5.79	5.79	
3	3.500	.083	.120			.216	.216	
		3.03	4.33			7.58	7.58	
3-1/2	4.000	.083	.120			.226	.226	
		3.47	4.97			9.11	9.11	
4	4.500	.083	.120			.237	.237	.281
		3.92	5.61			10.79	10.79	12.66
4-1/2	5.000						.247	
							12.53	

Pipe Size	O.D. WT/FT	80	E.H.	100	120	140	160	Dble. E.H.
1/8	.405	095	.095					
1/0	.109	.31	.31					
1/4	.540	.119	.119					
1/1	.910	.53	.53					
3/8	.675	.126	.126					
0, 0	,5	.73	.73					
1/2	.840	.147	.147				.187	.294
,		1.09	1.09				1.30	1.71
3/4	1.050	.154	.154				.218	.308
		1.47	1.47				1.94	2.44
1	1.315	.179	.179				.250	.358
		2.17	2.17				2.84	3.66
1-1/4	1.660	.191	.191				.250	.382
		3.00	3.00				3.77	5.21
1-1/2	1.900	.200	.200				.281	.400
		3.63	3.63				4.86	6.41
2	2.375	.218	.218				.343	.436
		5.02	5.02				7.46	9.03
2-1/2	2.875	.276	.276				.375	.552
		7.66	7.66				10.01	13.70
3	3.500	.300	.300				.437	.600
		310.25	10.25				14.32	18.58
3-1/2	4.000	.318	.318					.636
		12.51	12.51					22.85
4	4.500	.337	.337.		437		.531	.674
		14.98	14.98		19.01		22.51	27.54
4-1/2	5.000		.355					.710
			17.61					32.53

Pipe Size	O.D. WT/FT	5	10	20	30	40	Std.	60
5	5.563	.109	.134			.258	.258	
,	5.505	6.35	7.77			14.62	14.62	
6	6.625	.109	.134			.280	.280	
0	0.02)	7.59	9.29			.200 18.97	.200 18.97	
7	7.625					-	.301	
/	7.02)						23.57	
8	8.625	.109	.148	.250	.277	.322	.322	.406
0	0.023	.109 9.91	.140 13.40	.230	.277 24.70	.544 28.55	.522 28.55	.400 35.64
0	0 (25	7.71	13.10	22.90	21.70	20.99		59.01
9	9.625						.342 33.90	
		101						
10	10.750	.134	.165	.250	.307 34.24	.365 40.48	.365 40.48	.500 54.74
		15.19	18.70	28.04	34.24	40.48		54./4
11	11.750						.375	
							45.55	
12	12.750	.165	.180	.250	.330	.406	.375	.562
		22.18	24.20	33.38	43.77	53.53	49.56	73.16
14	14.000		.250	.312	.375	.437	.375	.594
			36.71	45.68	54.57	63.37	54.57	85.05
16	16.000		.250	.312	.375	.500	.375	.656
			42.05	52.36	62.58	82.77	62.58	107.5
18	18.000		.250	.312	.437	.562	.375	.750
			47.39	59.03	82.06	104.7	70.59	138.2
20	20.000		.250	.375	.500	.594	.375	.812
			52.73	78.60	104.1	123.1	78.60	166.4
24	24.000		.250	.375	.562	.688	.375	.969
			63.41	94.62	140.8	171.3	94.62	238.4

Pipe Size	O.D. WT/FT	80	E.H.	100	120	140	160	Dble. E.H.
5	5.563	.375	.375		.500		.625	.750
		20.78	20.78		27.04		32.96	38.55
6	6.625	.432	.432		.562		.718	.864
		28.57	28.57		36.39		45.30	53.16
7	7.625		.500					.875
			38.05					63.08
8	8.625	.500	.500	.593	.718	.812	.906	.875
		43.39	43.39	50.87	60.93	67.76	74.69	72.42
9	9.625		.500					
			48.72					
10	10.750	.594	.500	.719	.844	1.000	1.125	
		64.43	54.74	77.03	89.29	104.1	115.6	
11	11.750		.500					
			60.07					
12	12.750	.688	.500	.844	1.000	1.125	1.312	
		88.63	65.42	107.3	125.5	139.7	160.3	
14	14.000	.750	.500	.938	1.094	1.250	1.406	
		106.1	72.09	130.9	150.8	170.2	189.1	
16	16.000	.844	.500	1.031	1.219	1.438	1.594	
		136.6	82.77	164.8	192.4	223.6	245.3	
18	18.000	.938	.500	1.156	1.375	1.562	1.781	
		170.9	93.45	208.0	244.1	274.2	308.5	
20	20.000	1.031	500	1.280	1.500	1.750	1.968	
		208.9	104.1	256.1	296.4	341.1	379.0	
24	24.000	1.218	.500	1.531	1.812	2.062	2.343	
		296.4	125.5	367.4	429.4	483.1	541.9	

Plate Products

Hot Rolled ASTM-A36

Hot rolled plates made to ASTM-A36 are intended for use in structural applications. Plates 1/2" and under are normally sheared: while heavier plates are flame cut. Flame cutting is necessary when plate thickness exceeds mill shearing limits.

Analysis

Thickness	Carbon	Manganese	Phosphorus	Sulphur	Silicon
$\frac{3}{_{16}}$ To $\frac{3}{_4}$ "	.25 Max	.80 / 1.20	.04 Max	.05 Max	.40 Max
$\frac{3}{4} - 1\frac{1}{2}$.25 Max	.80 / 1.20	.04 Max	.05 Max	.40 Max
1 ¹ / ₂ - 2	.26 Max	.80 / 1.20	.04 Max	.05 Max	
$\frac{1}{2}$.40
2 1/ ₂ - 4"	.27 Max	.85 / 1.20	.04 Max	.05 Max	
					.40
4" & Up	.29 Max	.85 / 1.20	.04 Max	.05 Max	
					.40

Applications

Carbon steel plates have so many and such varied uses that a comprehensive list of plate applications would be impossible in these pages, however a few uses are: tanks, tubes, truck frames, railroad cars, and many structural uses, such as: base plates, girders, etc.

Mechanical Propertie	? S
----------------------	------------

Tensile Strength	Yield Point	Elongation
(P.S.I.)	(P.S.I.)	In 8 Inches
58,000 - 80,000	36,000 Minimum*	20%
* Yield Point 32,	000 P.S.I. for plates over	8 inches thick.

Machinability

This grade is satisfactory for ordinary machining or drilling but it is not considered a free machining grade.

Weldability

These grades present no problems when using all welding processes. The quality is generally high for both welds and joints. Welding rod specifications are dependent on conditions such as the thickness of the sections to be welded, service requirements and design.

High Tensile Plates

ASTM A572 Grade 50

High Tensile Plates are low alloy steel, which produce high strength and are intended primarily for weight reduction, or longer life, by means of greater strength.

Analysis (Typical)

	Carbon	Mn	Р	Sulphur	Silicon	Cb
Gr. 50	.23 Max	1.35 Max	.04 Max	.05 Max	.40 Max	.01 Min
	Ме	echanical	Propert	ies (Typi	cal)	
	Tensile	Strength	Yield	Point	Elonga	ation
	(P.	S.I.)	(P.S	.I.)	In	2"
Gr. 50	65.00	0 Min.	50.0	000	Min.	21%

Pressure Vessel Quality Plate

A516 Grade 70

Applications

A516/70 is a carbon steel plate for boilers for stationary service and other pressure vessels. The maximum thickness under this specification is 6° .

Analysis (Typical)

	Carbon	Mn	Phosphorus	Sulphur	Silicon
A516 Gr. 70	.28 Max	1.2 Max	.035 Max	.04 Max.	.1540

Mechanical Properties

	Tensile Strength	Yield Point	Elongation
	(P.S.I.)	(P.S.I.)	In 8"
A516 Gr. 70	70,000 - 90,000	38,000 Min.	17%
	TV7 1 1	1 .1	

Weldability

These grades present no problems when using all welding processes. Welding rod specifications depend on conditions such as thickness of section, service requirements and design.

Corrosion Resistant Plate A588

This specification covers high strength low alloy steel which is made to reduce weight without sacrificing strength and is primarily used in structural applications. Additionally, this grade is more resistant to atmospheric corrosion in most environments than carbon steel and when properly exposed to the atmosphere this steel is suitable for many applications in the bare or unpainted/ uncoated condition.

Applications

A588 steel is intended to be used in structural applications demanding higher strength in a low alloy product for enhance weld ability like bridges. However it is also made to a fine grain standard making it ideal for manufactured goods like tubing. This material performs well in structural applications where corrosion resistance is desired with or without painting or coating the finished product. A prime example again is bridges. In uncoated applications the material will allow surface rust to a point where the corrosion is halted or retarded depending on the corrosive nature of the surrounding atmosphere.

Analysis (Typical)								
	С	Mn	Р	Sulphur	Silicon	Ni	Cr	Cu
A588 Gr. A	.19	.80- 1.25	.04 Max	.05 Max	.30065	.40 Max	.04- .65	
A588 Gr. B	.20 Max		.04 Max	.05 Max	.1550	.50 Max	.04- .70	.20- .040
		Mech	anica	ıl Proper	ties (Ty	bical)		
Tensile Strength Yield Point Elongation								ation
(P.S.I.) (P.S.I.) In 2"							2"	
A588		70,000) Min.	5	50,000		18	%

Gr. A&B

Weldability

Welding this grade of steel presents no problems when using the welding specification outlines in the A6 guidelines of the ASTM manuals. Welding wire or rod specifications depend on thickness of section, service requirements and design. Some heating before and after welding may be necessary.

PLATE

High Brinell Plate

High Brinell or Wear Plates are made from heat treated, high strength, abrasion resisting steels.

Analysis

Because these plates are made to a specific hardness range rather than to a specific ASTM grade, there is a wide range of chemistries found in these steels depending on the mill of origin.

Applications

This steel is used in applications requiring high strength and high wear resistance. Good candidates for these steels are mining, earth moving equipment, loader buckets, cutting edges, chutes, slurry pipe, ore bins, and similar uses.

Typical Mechanical Properties

Grade	Tensile Strength	Yield Point	Elongation Percent	Brinell Hardness
	(P.S.I.)	(P.S.I.)	In 2"	Thattilless
AR400	180,000	145,000	14	400
AR500	230,000	190,000	14	500

Fabrication

Due to the proprietary nature of High Brinell plate, procedures for welding, drilling and forming are specific to each mill's product and can be provided upon request.

Constructional Alloy A514

Heat treated constructional alloy steels are low-carbon alloy steel with a level of strength substantially higher than that of the highstrength low alloy grades. This higher strength is obtained by heat treating, water quenching and tempering. The alloying elements and amount of the alloy content vary among the grades depending upon the section thickness and desired properties. Their general weldability is improved by the lower carbon content.

The range of hardness for ASTM A-514 is Brinell 235 - 293. This range is sometimes referred to as "Regular Quality." If you have specific hardness requirements, please contact our sales office.

	1 ypiciii 2	11111 y 313 0j 1	1)11	
Carbon	Manganese	Phosphorus	Sulphur	Silicon
.1221	.70 - 1.00	.035 Max.	.035 Max.	.2035
Chromium	Molybdenum	Vanadium	Titanium	Boron
.400065	.1525	.0308	.0103	.0005 -
				.005

Typical Analysis of A514

Mechanical Properties For Regular Quality

Reduction of Area (Min. %)

Tensile Strength (P.S.I.)	Yield Point (P.S.I.)	Elonga- tion In 2"	³∕₄ Inch And Under	Over ³/₄ Inch
110 to 130,000	100,000 Min.	18% Min.	40%	50%

Applications

Regular Quality is used in general structural applications where its greater strength permits reduction in weight by using smaller cross-sectional areas. It is for welded construction where procedures are suitable to maintain the properties of the plate.

321 and 360 Minimum Brinell Quality are for applications where higher hardness and strength in conjunction with increased resistance to impact abrasion are important.

Forming

Regular Quality can be cold-formed readily, provided sufficient power is available and allowance is made for greater spring back than with mild steel.

Thickness Of Material	Minimum Radius
Up to 1" inclusive	Two Times Thickness
Over 1 inch to 2" inclusive	Three Times Thickness

Warm forming may be done at temperatures below 1100°F. without destroying the mechanical properties or toughness. Hot forming may be done at 1600-1800°F, but the formed part must be heattreated to restore its original properties. To insure proper safety and the structural integrity of the finished product we will assist you with heat number and source-mill information so that you can obtain accurate information from the producing mill prior to any attempt to form this material.

Machinability

The cutting speed of Regular Quality is 65 surface feet per minute or approximately 40% of 1212.

Weldability

Similar techniques to those used in structural carbon steels apply but precautions must be used. Hydrogen must be kept out of the welding operation. Large sections or those under high restraint should be preheated to temperatures not exceeding 400°F.

Heat Treating

Stress relieving may be performed by heating at temperatures up to 1100°F. If Regular Quality material is heated over 1100°F, it must be heat treated again to restore the original strength.

Austinize	Quench	Temper
1650°F to 1700°F	Agitated Water	1150°F to 1250°F

Weights For Plate Products							
	Weight		Weight		Weight		
	Per Plate		Per Plate	F	Per Plate		
³ / ₁₆ Inch		³ / ₁₆ Inch (Cont.)		$\frac{1}{4}$ Inch (C	ont.)		
7.66 Lbs. /	' Sq. Ft.	96 x 120	612.8	288	1225.2		
48 x 96	245.1	144	735.4	72 x 96	490.1		
120	306.4	240	1225.6	120	612.6		
144	367.7	288	1470.7	72 x 144	735.1		
240	612.8	360	1838.4	240	1225.2		
288	735.4	120 x 240	1532.0	288	1470.2		
60 x 96	306.4	360	2298.0	360	1837.6		
120	383.0	¹ / ₄ Inch		84 x 240	1429.4		
144	459.6	10.21 Lbs.	/ Sq. Ft.	360	2144.1		
240	766.0	48 x 96	326.7	96 x 96	653.4		
288	919.2	120	408.4	120	816.8		
72 x 120	459.6	144	490.1	144	980.2		
144	551.5	240	816.8	240	1633.6		
240	919.2	288	980.2	288	1960.3		
288	1103.0	60 x 96	408.4	360	2450.4		
360	1378.8	120	510.5	120 x 240	2042.0		
84 x 240	1072.4	144	612.6	360	3063.0		
360	1608.6	240	1021.0				

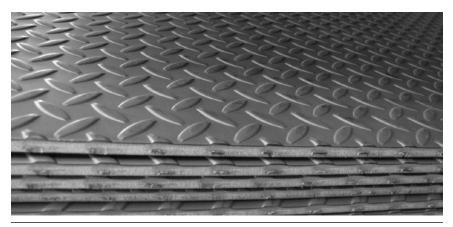
	Weigl	nts For F	Plate Pro	oducts	
	Weight		Weight		Weight
	Per Plate		Per Plate		Per Plate
⁵ / ₁₆ Inch		$\frac{3}{8}$ Inch (C	ont.)	¹ / ₂ Inch (0	Cont.)
12.76 Lbs.	/ Sq. Ft.	240	1531.0	360	3675.6
48 x 96	408.3	288	1837.2	84 x 240	2858.8
120	510.4	72 x 120	918.6	288	3430.6
144	612.5	144	1102.5	360	4288.2
240	1020.8	240	1837.2	96 x 120	1633.6
60 x 96	510.4	288	2204.6	144	1960.3
120	638.0	360	2755.8	240	3267.2
144	756.6	84 x 240	2143.4	288	3920.6
240	1276.0	360	3215.1	360	4900.8
288	1531.2	96 x 120	1224.8	120x 240	4084.0
72 x 120	756.6	144	1469.8	360	6126.0
144	918.7	240	2449.6	⁵ / ₈ Inch	
240	1531.2	288	2939.5	25.52 Lbs	s. / Sq. Ft.
288	1837.4	360	3674.4	48 x 96	816.6
360	2296.8	120 x 240	3062.0	120	1020.8
84 x 240	1786.4	360	4593.0	144	1225.0
360	2679.6	⁷ / ₁₆ Inch		240	2041.6
96 x 120	1020.8	17.87 Lbs.	/ Sq. Ft.	288	2449.9
144	1225.0	96 x 240	2859.2	60 x 96	1020.8
240	2041.6	¹ / ₂ Inch		144	1531.2
288	2449.9	20.42 Lbs.	/ Sq. Ft.	240	2552.0
360	3062.4	48 x 96	653.4	288	3062.4
120 x 240	2552.0	120	816.8	72 x 120	1531.2
360	3828.0	144	980.2	144	1837.4
³ / ₈ Inch		240	1633.6	240	3062.4
15.31 Lbs.	· -	288	1960.3	288	3674.9
48 x 96	489.9	60 x 96	816.8	360	4593.6
120	612.4	120	1021.0	84 x 240	3572.8
144	734.9	144	1225.2	360	5359.2
240	1224.8	240	2042.0	96 x 120	2041.6
288	1469.8	60 x 288	2450.4	144	2449.9
60 x 96	612.4	72 x 120	1225.2	240	4083.2
120	765.5	144	1470.2	288	4899.8
144	918.6	240	2450.4	360	6124.8
		288	2940.5		

Weights For Plate Products (Continued) Weight Weight Weight Per Plate Per Plate Per Plate ⁵/₈ Inch (Cont.) ⁷/_° Inch (Cont.) 1 Inch (Cont.) 120 x 240 60 x 5104.0 96 1429.2 144 2940.5 4900.8 7656.0 360 120 1786.5 240 ³/₄ Inch 144 2143.8 288 5881.0 30.63 Lbs. / Sq. Ft. 240 3573.0 360 7351.2 48 x 96 980.2 288 4287.6 84 x 240 5717.6 120 1225.2 360 5395.5 360 8576.4 144 1470.2 72 x 120 2143.8 96 x 120 3267.2 240 2450.4 144 2572.6 144 3920.6 60 x 96 1225.2 240 4287.6 240 6534.4 120 1531.5 5145.1 7841.3 288 288 144 1837.8 360 6431.4 360 9801.6 3063.0 84 x 240 240 5002.2 120x 240 8168.0 288 3675.6 360 7503.3 120 x 360 12252.0 $1^{1}/_{8}$ Inch 72 x 120 1837.8 96 x 120 2858.4 144 2205.4 144 3430.1 45.95 Lbs. / Sq. Ft. 3675.6 240 240 5716.8 96 x 240 7352.0 288 4410.7 288 6860.2 1 1/ Inch 51.05 Lbs. / Sq. Ft. 360 7351.2 360 8575.2 1633.6 84 x 240 96 4288.2 120 x 240 7146.0 48 x 360 6432.2 120 360 10719.0 2042.0 96 x 120 144 2450.4 2450.4 1 Inch 40.84 Lbs. / Sq. Ft. 3267.2 144 2940.5 192 4900.8 1306.9 240 48 x 96 240 4084.0 120 1633.6 60 x 96 2885881.0 2042.0 360 7351.2 144 1960.3 120 2552.5 3267.2 6126.0 3063.0 120 x 240 240 144 3920.6 4084.0 360 9189.0 288 192 ⁷/_° Inch 96 1633.6 240 60 x 5105.0 35.73 Lbs. / Sq. Ft. 120 2042.0 72 x 120 3063.0 48 x 96 1143.4 144 2940.5 144 3675.6 4900.8 1429.2 240 4084.0 120 192 144 1715.0 6126.0 288 4900.8 240 2402858.4 72 x 120 2450.4 360 9189.0

Weights For Plate Products (Continued)

	Weight	Weight	Weight	
	Per Plate	Per Plate	Per Plate	
$1 \frac{1}{4}$ Inch (Cont.)		1 ⁵ / _s Inch	2 Inch (Cont.)	
84 x 240	7147.0	66.36 Lbs. / Sq. Ft.	84 x 240 11435.2	
360	10720.5	96 x 240 10617.6	96 x 240 13068.8	
96 x 120	4084.0	1 ³ / ₄ Inch	2 ¹ / ₄ Incb	
144	4900.8	71.47 Lbs. / Sq. Ft.	91.89 Lbs. / Sq. Ft.	
192	6534.4	48 x 96 2287.0	60 x 240 9189.0	
240	8168.0	120 2858.8	72 x 240 11026.8	
360	12252.0	144 3430.6	84 x 240 12864.6	
$1\frac{3}{8}$ Inch		192 4574.1	96 x 240 14702.4	
56.15 Lbs	. / Sq. Ft.	240 5717.6	$2^{1}/_{2}$ Incb	
96 x 240	8984.0	60 x 96 2858.8	102.1 Lbs. / Sq. Ft.	
$1 \frac{1}{2}$ Incb		120 3573.5	60 x 240 10210.0	
61.26 Lbs	. / Sq. Ft.	144 4288.2	72 x 240 12252.0	
48 x 96	1960.3	192 5717.6	96 x 240 16336.0	
120	2450.4	240 7147.0	$2^{3}/_{4}$ Incb	
144	2940.5	72 x 120 4288.2	112.3 Lbs. / Sq. Ft.	
192	3920.6	144 5145.8	3 Inch	
240	4900.8	192 6861.1	122.5 Lbs. / Sq. Ft.	
60 x 96	2450.4	240 8576.4	$3^{1}/_{2}$ Incb	
60 x 120	3063.0	360 12864.6	142.9 Lbs. / Sq. Ft.	
144	3675.6	84 x 240 10005.8	4 Incb	
192	4900.8	360 15008.7	163.36 Lbs./ Sq. Ft.	
240	6126.0	96 x 120 5717.6	4 ¹ / ₂ Incb	
72 x 120	3675.6	144 6861.1	183.8 Lbs. / Sq. Ft.	
144	4410.7	96 x 192 9148.2	5 Inch	
192	5881.0	240 11435.2	204.2 Lbs. / Sq. Ft.	
240	7351.2	1 ⁷ / ₈ Inch	6 Inch	
360	11026.8	76.57 Lbs. / Sq. Ft.	245.0 Lbs. / Sq. Ft.	
84 x 240	8576.4	96 x 240 12251.2	8 Inch	
360	12864.6	2 Inch	326.7 Lbs. / Sq. Ft.	
96 x 120	4900.8	81.68 Lbs. / Sq. Ft.		
144	5881.0	60 x 240 8168.0		
192	7841.3	72 x 240 9801.6		
240	9801.6			

Floor Plate A786 Commercial Quality


Diamond Floor Plate is made of rolled carbon steel that has great structural strength and long wearing qualities. The practical safety tread pattern provides 4-way traction, easy cleaning and drainage.

Applications

Diamond Floor Plate is extensively used in safety floors, step treads, walkways, truck beds, truck bumpers, conveyors, cover plates, running boards, cab floors, and truck tail gates.

Weldability

This material presents no welding problems when using all welding processes. The quality of the welds is generally extremely high for both welds and joints. Welding rod specifications are dependent on welding conditions such as the thickness of the sections to be welded, service requirements and design.

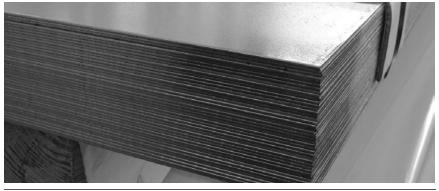
Floor Plate

				.0.0.0.0.0	
	Weight		Weight		Weight
	Per Plate		Per Plate]]	Per Plate
16 Ga.		$\frac{3}{16}$ Inch (0	Cont.)	³ / ₈ Inch	
3.00 Lbs.	/ Sq. Ft.	120	348.4	16.37 Lbs.	/ Sq. Ft.
36 x 96	72.0	240	696.8	48 x 96	523.8
120	90.0	60 x 96	348.4	120	654.8
144	108.0	120	435.5	240	1309.6
48 x 96	96.0	240	871.0	48 x 288	1571.5
120	120.0	288	1045.2	60 x 240	1637.0
192	192.0	72 x 240	1045.2	288	1964.4
240	240.0	288	1254.2	72 x 240	1964.4
14 Ga.		84 x 240	1219.4	288	2357.3
3.75 Lbs.	/ Sq. Ft.	288	1463.3	96 x 240	2619.2
48 x 96	120.0	¹ / ₄ Inch		288	3143.0
120	150.0	11.26 Lbs.	/ Sq. Ft.	¹ / ₂ Inch	
192	240.0	48 x 96	360.3	21.47 Lbs.	/ Sq. Ft.
240	300.0	120	450.4	48 x 96	687.0
12 Ga.		240	900.8	120	858.8
5.25 Lbs.	/ Sq. Ft.	288	1081.0	240	1717.6
48 x 96	168.0	60 x 120	563.0	288	2061.1
120	210.0	240	1126.0	60 x 240	2147.0
192	336.0	288	1351.2	288	2576.4
240	420.0	72 x 240	1351.2	72 x 240	2576.4
60 x 120	262.5	288	1621.4	288	3091.7
240	525.0	96 x 240	1801.6	96 x 240	3435.2
¹ / ₈ Inch		288	2161.9	288	4122.2
6.15 Lbs.	/ Sq. Ft.	⁵ / ₁₆ Inch		⁵ / ₈ Inch	
36 x 120	184.5	13.81 Lbs.	/ Sq. Ft.	26.58 Lbs.	/ Sq. Ft.
48 x 96	196.8	48 x 96	441.9	48 x 240	2126.4
120	246.0	120	552.4	60 x 240	2658.0
240	492.0	240	1104.8	72 x 240	3189.6
288	590.4	288	1325.8	96 x 240	4252.8
60 x 120	307.5	60 x 120	690.5	³ / ₄ Inch	
240	615.0	240	1381.0	31.68 Lbs.	/ Sq. Ft.
288	710.4	288	1657.2	48 x 240	2534.4
72 x 240	738.0	72 x 240	1657.2	60 x 240	3168.0
288	885.6	288	1988.6	72 x 240	3801.6
³ / ₁₆ Inch		96 x 240	2209.6	96 x 240	5068.8
8.71 Lbs.	/ Sq. Ft.	288	2651.5	96 x 288	6082.6
48 x 96	278.7				

Sheet Products

Hot Rolled ASTM-A1011

Commercial Quality is suitable for all ordinary purposes where the presence of oxide on the surface is not objectionable. Sheets of this quality may be suitable for bending and moderate forming; however, they are not guaranteed against breakage except that caused by piped steel (material with tubular voids). Commercial Quality sheets should be capable of withstanding standard test bends, i.e., being bent flat on itself in any direction at room temperature.


Analysis

Carbon	Manganese	Phosphorus	Sulphur
.15 Max.	.3060	.04 Max.	.05 Max.
	Ap	plications	

Commercial Quality sheets have good ductility. They are easy to fabricate and are used for a wide variety of purposes, such as barrels and drums, lockers, cabinets, doors, blower and ventilating systems, bins, partitions, chutes, steel jackets, and agricultural equipment.

Weldability

This quality of sheet presents no welding problems, when using all welding processes. Welding quality is generally extremely high for welds and joints. Welding rod specifications are dependent on welding conditions such as thickness of section, service requirements and design to name a few of the probable welding conditions.

Sheet Products

High Tensile Sheet ASTM A1011 Grade 50

High Strength / Low Alloy sheets (sometimes referred to as High Tensile sheets) are rolled and generally stocked in Grade 50.

Analysis

Carbon Manganese Phosphorus Sulphur Columbium Vanadium

.23 1.35 Max .04 Max .05 Max .01 Min .01 Min Max

Applications

This material is extensively used in industrial and domestic air conditioning equipment, farm buildings, farm elevators, farm wagons, fertilizer wagons, hay balers, potato planter hoppers, tractors, bins, blowers, booms, concrete forms, conveyors, filing cabinet parts, floor plates, door frames, furnace parts, material handling equipment, pole line hardware, lamp and sign posts, pump parts, scraper parts, tanks, trailers, transformer shells, trucks, wheelbarrows and, worm gears.

Mechanical Properties

	Tensile Strength	Yield Strength	Elongation In
	(P.S.I.)	(P.S.I.)	2"
All Gauges - Gr 50	65,000 Min.	50,000 Min.	22% Min.

Forming

High Tensile Sheet may be hot or cold formed. To insure proper safety and the structural integrity of the finished product we will assist you with heat number and source-mill information so that you can obtain accurate information from the producing mill prior to any attempt to form this material.

For cold forming, a greater force is required to produce a permanent set because of the higher yield point than carbon steel. It is suggested for cold forming that the inside radius of the bend should be at least equal to the thickness of the material for sheet and strip up to $\frac{1}{16}$ inclusive; at least twice the thickness of the material over $\frac{1}{16}$ to $\frac{1}{4}$, inclusive; and three times the thickness for material over $\frac{1}{4}$ to $\frac{1}{2}$ inclusive.

SHEET

Punching and Shearing

Shearing may require tighter and more secure clamping if a clamp hold down is used because the metal tends to pull more than structural carbon steel. Punching requires up to 20% greater force than for equal thicknesses of ASTM-A569 material.

Gas Cutting

No special precautions need be taken beyond those required for structural steel, and the heat effects and cutting speeds are similar for both grades. This material can be plasma-cut with minimal warpage.

Weldability

High Tensile is readily welded by all the usual methods, i.e., shielded metal arc, submerged arc, and electrical resistance, including spot welding. An important advantage in welded structures is the fact that this material experiences an increase in the yield and tensile strength with practically no decrease in elongation when stress-relieved.

Cold Rolled Sheet ASTM A1008

Specification: Commercial Quality

Sheets of this quality should be suitable for bending and moderate forming; however, they are not guaranteed against breakage except that caused by piped steel (material with tubular voids). Sheets of Commercial Quality should be capable of withstanding a standard bend test, i.e., being bent flat on itself in any direction at room temperature.

Cold Rolled Sheets are from continuous mill production from low-carbon open-hearth rimmed, texture or capped steel with a carbon maximum of 0.15.

Applications

The dull surface texture is suitable for paints, lacquers and enamels. Cabinets, appliances, auto body parts, furniture, file cases and desks, partitions, and doors are some applications for cold rolled sheets.

Weights For H.R. & C.R. Sheets

3

Per Sheet 79) 18.02 22.53 24.03 30.04 39) 24.02 30.03		120 x 96 120 144	Per Sheet 747) 75.07 93.84 100.10 125.12	Inches 11 Ga. (C 72 x 96 120 144 240	Per Sheet ont.) 240.24 300.30 360.36
18.02 22.53 24.03 30.04 39) 24.02	36	x 96 120 x 96 120 144	75.07 93.84 100.10	72 x 96 120 144	240.24 300.30
22.53 24.03 30.04 39) 24.02		120 x 96 120 144	93.84 100.10	120 144	300.30
24.03 30.04 39) 24.02	48	x 96 120 144	100.10	144	
30.04 39) 24.02	10	120 144			500.50
39) 24.02		144	12/112	240	600.60
24.02			150.14	10 Ga. (.1	
		240	250.24	36 x 96	135.12
00.00	60	x 96	125.12	120	168.90
32.03	00	-			180.16
				-	225.20
	72				270.24
	, _				450.40
					225.20
	12				281.50
					337.80
	0	-			450.40
	48				563.00
		120			270.24
		144			337.80
60.04		240		144	405.36
78)	60	x 96	175.16	192	540.48
		120		240	675.60
60.36		144	262.74	7 Ga (.17	93)
64.38	72	x 120	262.74	36 x 96	180.17
80.48		144	315.29	120	225.21
98)	11	Ga. (.1 1	196)	48 x 96	240.22
60.00	36	x 96	120.12	120	300.28
75.00		120	150.15	144	360.34
80.06	48	x 96	160.16	240	600.56
100.00		120	200.20	60 x 96	300.28
120.01		144	240.24	120	375.35
200.02		240	400.40	144	450.42
100.00	60	x 96	200.20	240	750.70
125.01		120	250.25	72 x 120	450.42
150.01		144	300.30	144	540.50
		240	500.50		
	78) 48.29 60.36 64.38 80.48 98) 60.00 75.00 80.06 100.00 120.01 200.02 100.00 125.01	40.04 99) 72 30.02 37.53 40.03 12 50.04 36 50 48 45.03 48 48.03 60 48.29 60 60.36 72 80.48 72 80 48 100.00 36 75.00 80.06 48 48 60 64 60.04 72 80.48 72 80.06 48 100.00 36 75.00 80.06 120.01 200.02 100.00 60 125.01 60	40.04 240 99) 72×120 30.02 144 37.53 240 40.03 12 Ga.(.10) 50.04 36×96 59) 120 36.02 48×96 45.03 120 48.03 144 60.04 240 78) 60×96 48.29 120 60.36 144 64.38 72×120 80.48 11 Ga. (.12) 60.00 36×96 75.00 120 80.06 48×96 100.00 120 120.01 144 240.02 240 100.00 120 120.01 144	40.04 240 312.80 99) 72 x 120 187.68 30.02 144 225.22 37.53 240 375.36 40.03 12 $Ga.(.1046)$ 50.04 36 x 96 120 131.37 36.02 48 x 96 48.03 144 210.19 60.04 240 350.32 78) 60 x 96 60.36 144 262.74 64.38 72 x 120 26.36 144 262.74 80.48 144 315.29 98) 11 $Ga.(.1196)$ 60.00 36 x 96 120.12 75.00 120 120 150.15 80.06 48 x 48 x 200.02 240 400.40 100.00 60 x 96 200.20 120 250.25 150.01 144 300.30	40.04 240 312.80 120 99) 72 x 120 187.68 144 30.02 144 225.22 240 375.36 60 x 40.03 12 $Ga.(.1046)$ 120 375.36 60 x 96 50.04 36 x 96 105.10 144 59) 120 131.37 192 36.02 48 x 96 140.13 240 45.03 120 175.16 72 x 96 48.03 144 210.19 120 144 60 x 96 175.16 192 48.29 120 218.95 240 60.36 144 262.74 36 x 60.36 144 315.29 120 60.36 144 315.29 120 98) 11 $Ga.(.1196)$ 48 x 60.00 36 x 96 160.16 240 100.00 120 200.20 60 x 96 120.01 144 240.24 120 200.02 240 400.40 144 100.00 60 x 96 200.20 240 120 250.25 72 x 120 120 250.25 72 x 120 120 120 250.25 72 x 120 120 250.25 72 x 120 120 </td

AISI Thickness Tolerance H.R. & C.R. Sheet

	Thickness In Inches						
Gage Number	Decimal Equivalent	Tol. Range H.R. & P.&O.	Tol Range C.R. Sheet	Pounds Per Sq. Foot			
7	.1793	.1873 .1713	.0883 .1703	7.507			
10	.1345	.1425 .1265	.1405 .1285	5.630			
11	.1196	.1276 .1116	.1256 .1136	5.005			
12	.1046	.1126 .0966	.1106 .0986	4.379			
13	.0897	.0967 .0827	.0947 .0847	3.75			
14	.0747	.0817 .0677	.0797 .0697	3.128			
16	.0598	.0658 .0538	.0648 .0548	2.502			
18	.0478	.0528 .0428	.0518 .0438	2.102			
20	.0359		.0389 .0329	1.501			
22	.0299		.0329 .0269	1.261			
24	.0239		.0269 .0209	1.001			
26	.0179		.0199 .0159	.751			

Commercial Quality

Flat galvanized sheets are flat, have closely guarded shearing tolerances, and are ductile and soft.

These sheets are produced by passing the base sheets through a bath of molten zinc which, after controlled cooling, gives a clean, bright, uniform spangle.

Stamping, cold drawing, double seaming and brake or roll forming will not impair the protective quality of these sheets.

Applications

Flat galvanized sheets are used as the prime general sheet metal for heating, cooling, joist hangers, and for sign work if the sheets are primed before painting.

Paintable Galvanized Sheet ASTM-A653, A-40/A-60

Paintable Galvanized Sheet, sometimes called Paint Bond, Jetkote or Wiped Galvanized, has a surface coating that makes priming unnecessary.

Applications

Paintable galvanized sheets are used in applications where paint, enamels and lacquers will be used or where flat, stretcher-leveled sheets are needed. These sheets can be drawn, stamped, formed, and sheared without cracking, peeling or flaking.

Office furniture, cabinets of all types, appliance shells, truck and trailer bodies, lighting fixtures, signs, air conditioning and refrigeration equipment are some applications for Paintable Galvanized sheet.

Chemical Composition (Typical)						
Carbon	Manganese	Phosphorus	Sulphur			
.15 Max.	.3060	.05 Max.	.05 Max.			

Page 73

SHEE:

AISI Thickness Tolerance For Galv. Sheet

Ga.	Dec.	Тс	lerar	ice	Ga.	Dec.	Tol	eran	ce
No.	Equiv.]	Range	e		Equiv.	R	ange	
10	.1382	.1472	То	.1292	20	.0396	.0436	То	.0356
11	.1233	.1323	То	.1143	22	.0336	.0376	То	.0296
12	.1084	.1174	То	.0994	24	.0276	.0316	То	.0236
14	.0785	.0865	То	.0705	26	.0217	.0247	То	.0187
16	.0635	.0695	То	.0575	28	.0187	.0217	То	.0157
18	.0516	.0566	То	.1466	30	.0157	.0187	То	.0127

Weights]	For Galvaniz	zed Sheets
-----------	--------------	------------

Size In	Weight	Size In	Weight	Size In	Weight
Inches	Per Sheet	Inches	Per Sheet	Inches	Per Sheet
10 Ga. (.13	8)	18 Ga. (.05	52)	26 Ga. (.0	22)
Wt. / Sq. Ft	. 5.786	Wt. / Sq. F	t. 2.158	Wt. / Sq. 1	Ft907
48 X 96	185.15	48 X 96	69.06	48 X 96	29.02
120	231.44	120	86.32	120	36.28
12 Ga. (.10	9)	20 Ga. (.04	0)	28 Ga. (.0	19)
Wt. / Sq. Ft	. 4.535	Wt. / Sq. F	t. 1.658	Wt. / Sq. 1	Ft782
48 X 96	145.12	48 X 96	53.06	36 X 96	18.77
120	181.40	120	66.32	120	23.46
14 Ga. (.07	9)	22 Ga. (.03	94)	30 Ga. (.0	16)
Wt. / Sq. Ft	. 3.284	Wt. / Sq. F 1	t. 1. 407	Wt. / Sq. 1	Ft657
48 X 96	105.09	48 X 96	45.02	36 X 96	15.77
120	131.36	120	56.28		
16 Ga. (.06	4)	24 Ga. (.02	:8)		
Wt. / Sq. Ft	. 2.658	Wt. / Sq. F	t. 1.157		
48 X 96	85.06	48 X 96	37.02		
120	106.32	120	46.28		

Expanded Metal & Grating Products

Expanded Metal, Expanded Metal Grating, Bar Grating, and Diamond Grip are all products that have openings in their horizontal surfaces which increase friction for safer climbing and standing, and allow dirt, oil, etc. to fall through. This provides a certain amount of self-cleaning.

Stock sizes are generally 48 x 96 sheets. However, 48 x 120, 48 x 144 and custom sizes are available upon request.

Style	Center To Cen- ter Of Bonds		Thickness	Weight In Per Squa	
Designation	Width	Length	Of Strand	Plain	Galv.
$1/_4$ - No. 18	.255	1.00	.048	1.14	1.71
$1/_{2}$ - No. 18	.500	1.20	.048	.70	.85
$1/_{2}$ - No. 16	.500	1.20	.060	.86	.97
$1/_{2}$ - No. 13	.500	1.20	.092	1.47	1.73
³ / ₄ - No. 16	.923	2.00	.060	.54	.65
³ / ₄ - No. 13	.923	2.00	.092	.80	.92
3/ ₄ - No. 10	.923	2.00	.092	1.20	1.36
³ / ₄ - No. 9	.923	2.00	.134	1.80	1.95
1- No. 16	1.090	2.40	.060	.44	.51
1 ¹ / ₂ - No. 16	1.330	3.00	.060	.40	.48
$1 \frac{1}{2}$ - No. 13	1.330	3.00	.092	.60	.68
$1 \frac{1}{2}$ - No. 10	1.330	3.00	.092	.79	.89
1 ¹ / ₂ - No. 9	1.330	3.00	.134	1.20	1.31
1 1/ ₂ - No. 6	1.330	3.00	.198	2.50	2.73
2 - No. 9	1.850	4.00	.134	.90	1.02

Expanded Metal - Raised

Expanded Metal & Grating

anded met/ & Grating

Expanded Metal - Flattened

Style	Center To Cen- ter Of Bonds		Strand	Weight Per Square Foot	
•					
Designation	Width	Length	Thickness	Plain	Galv
$1/_4$ - No. 20	.255	1.03	.030	.83	1.24
$1/_4$ - No. 18	.255	1.03	.040	1.11	1.65
$1/_{2}$ - No. 20	.500	1.26	.029	.40	.51
$1/_2$ - No. 18	.500	1.26	.039	.66	.88
$1/_2$ - No. 16	.500	1.26	.050	.82	1.00
$1/_{2}$ - No. 13	.500	1.26	.070	1.40	1.62
³ / ₄ - No. 16	.923	2.10	.048	.51	.61
³ / ₄ - No. 14	.923	2.12	.061	.63	.75
³ / ₄ - No. 13	.923	2.10	.070	.76	.86
³ / ₄ - No. 9	.923	2.12	.120	1.71	1.86
1 - No. 16	1.090	2.56	.048	.41	.50
1 ¹ / ₂ - No. 13	1.330	3.20	.070	.57	.68
1 $\frac{1}{2}$ - No. 9	1.330	3.20	.110	1.11	1.28

Expanded Metal - Grating

		To Center	Weight Per Square Foo	
Style	Of E	Bonds		
Designation	Width	Length	Plain	Galv
3.0 Lb. Grating	1.33	5.33	3.00	3.20
3.14 Lb Skywalk	2.00	6.00	3.14	3.34
4.0 Lb. Grating	1.33	5.33	4.00	4.30
4.27 Lb Walkway	1.41	4.00	4.27	4.57
5.0 Lb. Grating	1.33	5.33	5.00	5.50
6.25 Lb Grating	1.41	5.33	6.25	6.85

Expanded Metal Terminology

Material Terminology

Expanded Metal (also called raised or regular expanded metal) is metal sheet that is simultaneously slit and stretched into a rigid, open mesh. It is available in carbon, stainless and galvanized steel, and in aluminum.

Flattened Expanded Metal is made by passing expanded metal through a rolling mill to flatten it. This process reduces the thickness slightly and provides a smooth, flat surface.

Expanded Metal Grating is made from thicker sheet or plate, by a process similar to that which produces expanded metal. Expanded metal grating is often used for catwalks and platform applications where self cleaning and good footing are required.

Decorative Expanded Metal is manufactured so that the open areas have unique, decorative shapes.

Expanded Metal Stair Treads use expanded metal grating for the horizontal surfaces, flat bar for the vertical surfaces and angles at the corners.

The **Bond** is the point where adjacent *Strands* intersect. The bond is always twice the width of the Strand.

C.S.F. (100 Square Feet) is the unit of measure that is used to weigh and price expanded metal.

Camber is a slight bow which can occur during manufacturing and results in an out-of-square condition.

Deburring is a process whereby most expanded metal is passed through rotary steel brushes to remove burrs and rough edges. Expanded metal grating and very light expanded metal are generally not deburred.

The Diamond is the diamond-shaped open area formed by the Strands and bonds (also referred to as the **Opening**).

F.X.M. is the commonly used abbreviation for Flattened Expanded Metal.

L.W.D. or L.W.O. refers to the Long Way of the Diamond or Long Way of the Opening. This is used to make it clear that you are measuring in a direction that is parallel to the largest dimension of the diamond. Expanded Metal and Expanded Metal Grating is manufactured with the LWD running the width of the sheet or the length of the sheet.

Mesh is the nominal distance, expressed in inches, from the center of one EXPANDED MET bond to the center of an adjacent bond measured across the S.W.D.

The **Opening Size** is the area enclosed by the *Strands* and bonds.

The **Overall Thickness** is the finished thickness of the sheet which often determines the selection of framing components.

The *Percent of Open Area* is used by designers to calculate the degree to which light and air can pass through a piece of expanded metal.

The **Pitch** is the measurement from a point on one diamond to the same point on an adjacent diamond.

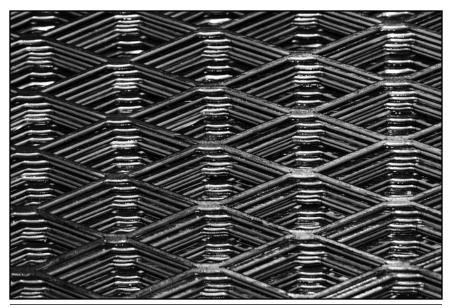
R.X.M. is the commonly used abbreviation for Raised Expanded Metal.

S.W.D. or **S.W.O.** refers to the Short Way of the Diamond or the Short Way of the Opening. This is used to make it clear that you are measuring in a direction that is parallel to the smallest dimension of the diamond. Expanded Metal and Expanded Metal Grating is manufactured with the SWD running the width of the sheet or the length of the sheet.

The *Strand* is the single metal strip that forms the border of the diamond, or opening. The strand has thickness (the thickness of the sheet) and width.

Diamond Grip

Diamond-Grip, made by ISG Safety Products, Ltd., is a light weight, high friction product which is used to provide a nonskid, self cleaning surface for stair treads, walkways, work platforms, and mezzanines. This material comes in galvanized channels of various gauges, widths and depths. It is most often stocked in 12 & 14 Gauge.


	Channel Height					
Size	1 1/ ₂ " High	2" High	2 1/2" High	3" High		
4 3/4" Wide X 144" Long	X	X	Х			
7" Wide X 144" Long	X	X	Х	X		
9 1/2" Wide X 144" Long	X	X	Х	X		
11 3/4" Wide X 144" Long	X	X	X	X		
18 3/4" Wide X 144" Long	X	X	X	X		

Diamond Grip Stair Treads

14 Ga. X 24" Long X 9 $1/_2$ " Wide X 1 $1/_2$ " Deep

14 Ga. X 30" Long X 9 1/2" Wide X 1 1/2" Deep

12 Ga. X 36" Long X 9 1/2" Wide X 1 1/2" Deep

Expanded Metal & Grating

Bar Grating Products

Welded Bar Grating is a manufactured product which has a multitude of uses. For instance, it is used to cover trenches in pavement, to make self-cleaning stair treads and to construct platforms around equipment.

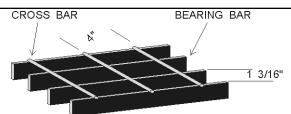
There are a number of questions that you will need to answer when ordering Welded Bar Grating:

1. What material? Most Welded Bar Grating is made from carbon steel but it is also available in Stainless Steel and Aluminum. A similar product is made from fiberglass for use in highly corrosive applications.

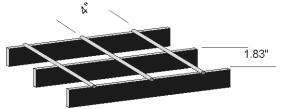
2. Which way do the bearing bars run? For greatest strength the bearing bars will usually run the short way of the span. (If you had a trench that was 10" X 120" the bearing bars would normally span the 10" dimension of your trench. See the illustration of bearing and cross bars on the next page)

3. What is the size of the area that you need to cover? Give the size in inches and remember to allow for clearance. If you are putting grating into a 10" wide trench, a 10" wide piece of grating will not fit. You would want to order your grating somewhat narrower, say 9 3/4" or 9 7/8" in width in order to clear.

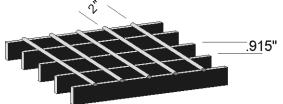
4. Are the pieces to be banded? Banding is used to close the spaces between the bearing bars. This makes for a more finished look, keeps the ends from being bent out of shape and reduces the chance of injury from the exposed ends of the bearing bars when the pieces have to be handled.

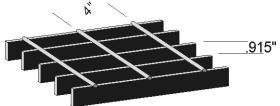

5. Are the pieces to be painted or galvanized? When special ordering you may specify that the grating be painted or galvanized by the manufacturer.

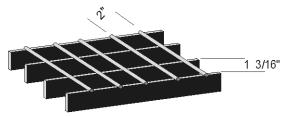
6. Are the bearing bars to be serrated or smooth? When special ordering you may specify that the top edge of the bearing bars be cut in such a manner that a series of bumps will provide greater friction.


Remember that while Welded Bar Grating is available in custom sizes, you will want to work from standard 3' X 24' panels whenever possible. (4' wide panels may be special ordered) This means that in the example of a 10" X 120" trench used above it would take 3 pieces 10" by 36" and 1 piece 10" X 12" to cover the trench with bearing bars running the short way of the span.

While it might seem easier to cover the area with one piece, you would have to run the bearing bars the 10' way to cover the trench with one piece. The 10' span would be very weak. Remember also, that you may occasionally have to remove the grating to clean your trench and one man can handle three-foot long pieces more easily than he can handle a ten foot long piece.


Types & Spacings Of Welded Bar Grating


Standard welded spacing pattern according to Federal specification RRG-661c. Bearing bars on $1 \frac{3}{16}$ centers. Cross bars on 4" centers. Most commonly used pattern.


Cross bars on 4" centers. Bearing bar spacing opened up to 1.83" centers. This grating is used for maximum light and air circulation.

Cross bars on 2" centers with bearing bars on .915" centers. Ideal for sidewalks. Accommodates bicycle traffic.

Bearing bars on .915" centers. Cross bars on 4" centers. Used where heavy loads are applied and depth is restricted.

Cross bar spacing narrowed to 2" centers. Bearing bars on $1 \frac{3}{16}$ " centers. Increased surface contact for long life under heavy traffic.

Bar Grating Load Table

U= Uniform Load

D = Deflection

C=Concentrated Load

Bearing Bar	Span							
Size In Inches		<i>2'0</i> "	2'6"	3'0"	3'6"	4'0"		
2/ 77.2/	U	575	370	259	186	144		
$3/_{16} X 3/_{4}$	D	.093	.152	.218	.294	.373		
	С	579	463	388	330	289		
	D	.077	.120	.173	.235	.310		
	U	688	440	304	225	172		
¹ / ₈ X 1	D	.073	.110	.160	.219	.286		
	С	688	549	459	391	343		
	D	.059	.091	.129	.175	.232		
	U	1030	659	460	335	256		
$3/_{16} X 1$	D	.073	.112	.160	.219	.287		
	С	1029	822	687	588	513		
	D	.058	.090	.129	.176	.230		
	U	1072	688	475	351	269		
$\frac{1}{8}X 1 \frac{1}{4}$	D	.059	.090	.175	.233	.290		
	С	1074	859	714	610	538		
	D	.048	.073	.104	.142	.180		
	U	1610	1029	714	528	401		
$3/_{16} X 1 \frac{1}{4}$	D	.059	.090	.128	.174	.230		
	С	1610	1283	1074	919	801		
	D	.048	.073	.105	.141	.180		
	U	1541	988	687	501	387		
$\frac{1}{8}X 1 \frac{1}{2}$	D	.045	.074	.106	.148	.193		
	С	1542	1237	1030	884	723		
	D	.038	.058	.086	.116	.155		
	U	2320	1484	1032	758	580		
$3/_{16} X 1 1/_2$	D	.047	.076	.107	.148	.193		
	С	2320	1858	1548	1325	1160		
	D	.038	.060	.088	.116	.154		
	U	3140	2018	1401	1030	788		
³ / ₁₆ X 1 ³ / ₄	D	.041	.062	.093	.126	.164		
	С	3150	2522	2100	1803	1573		
	D	.031	.053	.075	.100	.134		
2/ V 2	U	4118	2633	1830	1346	1029		
$3/_{16} X 2$	D	.038	.058	.080	.112	.140		
	C	4118	3293	2748	2350	2059		
	D	.029	.047	.062	.089	.116		
2/ 1/ 0.1/	U	5210	3330	2310	1670	1301		
$3/_{16} X 2 1/_{4}$	D	.033	.050	.073	.099	.128		
	C	5210	4169	3475	2913	2604		
		.028	.040	.058	.080	.103		

Cold Finished Bar Products ASTM A108

A low carbon steel of "machine" grade without "brittleness" when formed or bent. The manganese content is high, making it a good steel for carburized parts, since it produces a harder and more uniform case.

Rounds of 4" diameter and smaller are cold drawn and rounds over 4" are turned and polished having a high degree of accuracy, concentricity, straightness and a highly polished surface.

Analysis

Carbon	Manganese	Phosphorus	Sulphur
.1520	.6090	.04 Max.	.05 Max.

Applications

Suitable for general shafting purposes and other uses not requiring the greater strength of alloy or high carbon steel. Extensively used for parts to be case hardened, where requirements are not too high or too severe, such as worms, pinions, gears, ratchets, dogs, chain pins and king pins.

Typical Mechanical Properties

The following data is from mill lab tests. It is only a guide and cannot be used as a basis for the acceptance or rejection of material.

Cold Drawn Bars

Tensile Strength	Yield Point	Elongation in 2 Inches	% Reduction
(P.S.I.)	(P.S.I.)		Of Area
70,000 - 80,000	55,000 - 70,000	18 - 25%	45 - 57
Brinell	Rockwell	Percent	Surface Feet
Hardness	Hardness	Machinability	Per Minute
160 - 180	B-87	65	108

Weldability

This steel presents no welding problems when using all welding processes. Welding quality is generally high. Welding rod specifications are dependent on welding conditions such as thickness of section, service requirements and design.

Hardening

This steel will respond to any of the standard carburizing methods. The following heat treatment is suggested for a hard case and tough core: Carburize at $1650^{\circ}/1700^{\circ}$ F for approximately eight hours, cool in box and reheat to $1400/1450^{\circ}$ F.

Weights For Cold Drawn Round Bars Size In Wt. Per Wt. Per Size In Wt. Per Wt. Per Inches Ft. 12' Inches Ft. 12' .042 .50 $2 \frac{3}{4}$ 20.219 242.63 $1/_{8}$.094 1.13 $27/_{8}$ 22.091 265.09 $3/_{16}$ $2 \frac{15}{16}$ $1/_{4}$.167 2.0023.062 276.74 3 .261 3.13 24.053 288.64 $5/_{16}$ 3 1/16 .376 4.51 25.074 300.89 $3/_{8}$ 6.13 $3^{1/8}$ 26.105 313.26 7/16 .511 $3 \frac{3}{16}$.669 8.03 27.156 325.87 $1/_{2}$ 3¹/₄ .846 9/16 10.15 28.237 338.84 5/8 1.044 12.53 $35/_{16}$ 29.328 351.94 $3^{3/8}$ 1.263 15.16 30.449 365.39 $11/_{16}$ 1.503 18.04 $37/_{16}$ 378.96 $3/_{4}$ 31.580 1.765 21.18 $3 \frac{1}{2}$ 32.741 $13/_{16}$ 392.89 24.55 2.046 $35/_{8}$ 35.123 421.48 7/8 $3 \frac{3}{4}$ $15/_{16}$ 2.349 28.19 37.585 451.02 2.673 32.08 $37/_{8}$ 40.138 481.66 1 $1 \frac{1}{16}$ 3.017 36.20 $3 \frac{15}{16}$ 41.439 497.27 4 $1 \frac{1}{8}$ 3.382 40.58 42.770 513.24 $1 \frac{3}{16}$ 45.24 $4 \frac{1}{8}$ 3.770 45.483 545.80 $4 \frac{1}{4}$ $1 \frac{1}{4}$ 4.177 50.12 48.275 579.30 $1^{5/16}$ 4.604 55.25 $47/_{16}$ 52.630 631.56 60.65 649.57 $1 \frac{3}{8}$ 5.054 $4 \frac{1}{2}$ 54.31 66.28 60.307 5.523 $\frac{4}{4} \frac{3}{4}$ 723.68 $1^{7/16}$ 4 15/16 $1 \frac{1}{2}$ 6.014 72.17 65.161 781.93 1 %/16 5 6.525 78.30 66.823 801.88 $5 \frac{1}{4}$ 7.058 84.70 73.669 884.03 $1 \frac{5}{8}$ $1^{11}/_{16}$ 7.611 91.33 $5 \frac{1}{2}$ 80.856 970.27 $5 \frac{3}{4}$ 8.186 98.23 88.373 1060.48 $1 \frac{3}{4}$ 6 $1 \frac{13}{16}$ 96.221 1154.65 8.781 105.37 6 1/4 $17/_{8}$ 9.397 112.76 104.398 1252.78 1 15/16 $6 \frac{1}{2}$ 10.033 120.40 112.926 1355.11 $6 \frac{3}{4}$ 2 10.690 128.28 121.785 1461.42 $2 \frac{1}{16}$ 11.371 136.45 7 130.973 1571.68 $2 \frac{1}{8}$ 12.071 144.85 $7 \frac{1}{4}$ 140.492 1685.90 $2 \frac{3}{16}$ $7 \frac{1}{2}$ 12.790 153.48 150.352 1804.22 $2 \frac{1}{4}$ 13.533 162.40 $7 \frac{3}{4}$ 160.541 1926.49 $25/_{16}$ 14.293 171.52 8 171.061 2052.73

2183.05

2317.34

2455.72

2598.05

2744.34

181.921

193.112

204.643

216.504

228.695

 $8 \frac{1}{4}$

 $8 \frac{1}{2}$

 $8 \frac{3}{4}$

 $9 \frac{1}{4}$

9

180.89

190.62

200.47

221.00

231.70

 $2 \frac{3}{8}$

 $27/_{16}$

 $2 \frac{1}{2}$

 $25/_{8}$

 $2 \frac{11}{16}$

15.074

15.885

16.706

18.417

19.308

Weights For Cold Drawn Flat Bars

Size	In	Inches	Wt. Per	Wt. Per	Size	In I	nches	Wt. Per	Wt. Per
			<i>Ft.</i>	12'				<i>Ft</i> .	12'
1/8	х	1/4	.106	1.27	3/16	х	5	3.191	38.29
		5/ ₁₆	.133	1.60			6	3.829	45.95
		3/ ₈	.159	1.91			8	5.105	61.26
		$1/_{2}$.213	2.56			10	6.381	76.57
		5/ ₈	.266	3.19	1/4	Х	5/ ₁₆	.266	3.19
		$3/_{4}$.319	3.83			$3/_{8}$.319	3.83
		7/8	.372	4.46			$1/_{2}$.425	5.10
		1	.425	5.10			5/ ₈	.531	6.37
		$1 \frac{1}{8}$.478	5.74			$3/_{4}$.639	7.67
		$1 \frac{1}{4}$.531	6.37			7/8	.745	8.94
		$1 \frac{1}{2}$.639	7.67			1	.851	10.21
		$1 \frac{3}{4}$.745	8.94			$1 \frac{1}{8}$.957	11.48
		2	.851	10.21			$1 \frac{1}{4}$	1.064	12.77
		$2 \frac{1}{4}$.957	11.48			$1 \frac{3}{8}$	1.170	14.04
		$2 \frac{1}{2}$	1.064	12.77			$1 \frac{1}{2}$	1.276	15.31
		$2 \frac{3}{4}$	1.170	14.04			$1 \frac{3}{4}$	1.489	17.87
		3	1.276	15.31			2	1.702	20.42
		$3 \frac{1}{2}$	1.489	17.87			$2 \frac{1}{4}$	1.915	22.98
		4	1.702	20.42			$\frac{2}{2} \frac{1}{2}$	2.127	25.52
		$\frac{4}{2}$	1.915	22.98			$2 \frac{3}{4}$	2.340	28.08
		5	2.127	25.52			3	2.552	30.62
2/		6	2.552	30.62			$3 \frac{1}{2}$	2.978	35.74
3/ ₁₆	х	$\frac{1}{4}$.159	1.91			4	3.403	40.84
		$\frac{5}{16}$.199	2.39 2.87			4 1/ ₂ 5	3.829 4.254	45.95 51.05
		$\frac{3}{8}$ $\frac{1}{2}$.239 .319	2.87 3.83			$5 \frac{1}{2}$	4.234 4.679	56.15
		$\frac{1}{2}$ 5/8	.319	5.85 4.78			³ ¹ / ₂	4.079 5.105	61.26
		$\frac{3}{8}$.398 .478	4.78 5.74			7	5.956	01.20 71.47
		5/4 7/8	.559	6.71			8	6.806	81.67
		1	.639	7.67			10	8.508	102.10
		$1 \frac{1}{8}$.718	18.62	5/ ₁₆	х	$\frac{10}{3/8}$.398	4.78
		$1 \frac{1}{4}$.798	19.58	-7 16	21	$\frac{1}{2}$.531	6.37
		$1 \frac{1}{2}$.957	11.48			5/8	.665	7.98
		$1 \frac{3}{4}$	1.117	13.40			$\frac{3}{4}$.798	9.58
		2	1.276	15.31			7/8	.931	11.17
		$2\frac{1}{4}$	1.435	17.22			1	1.064	12.77
		$\frac{2}{2}\frac{1}{2}$	1.596	19.15			$1 \frac{1}{8}$	1.196	14.35
		$2 \frac{3}{4}$	1.755	21.06			$1 \frac{1}{4}$	1.329	15.95
		3	1.915	22.98			$1 \frac{1}{2}$	1.596	19.15
		$3 \frac{1}{2}$	2.233	26.80			$1 \frac{3}{4}$	1.861	22.33
		4	2.552	30.62			2	2.127	25.52
		$4 \frac{1}{2}$	2.872	34.46			$2 \frac{1}{4}$	2.393	28.72
				I					

Weights For Cold Drawn Flat Bars (Cont.)

Size	In	Inches	Wt. Per Ft.	r Wt. Per 12'	Size	In I	nches	Wt. Per Ft.	Wt. Per 12'
5/16	x	$2 \frac{1}{2}$	2.658	31.90	7/16	x	$2 \frac{1}{4}$	3.350	40.20
. 10		$2 \frac{3}{4}$	2.925	35.10	10		$2 \frac{1}{2}$	3.721	44.65
		3	3.151	38.29			3	4.467	53.60
		$3 \frac{1}{2}$	3.723	44.68			4	5.956	71.47
		4	4.254	51.05	$1/_{2}$	х	5/ ₈	1.064	12.77
		$4 \frac{1}{2}$	4.785	57.42			$3/_{4}$	1.276	15.31
		5	5.318	63.82			7/8	1.489	17.87
		5 1/2	5.850	70.20			1	1.702	20.42
		6	6.302	75.62			1 1/ $_8$	1.915	22.98
		8	8.508	102.10			1 1/ $_4$	2.127	25.52
		10	10.635	127.62			$1 \frac{1}{2}$	2.552	30.62
3/ ₈	Х	$1/_{2}$.639	7.67			2	3.403	40.84
		5/ ₈	.798	9.58			$2 \frac{1}{4}$	3.829	45.95
		$3/_{4}$.957	11.48			$2 \frac{1}{2}$	4.254	51.05
		7/8	1.117	13.40			$2 \frac{3}{4}$	4.679	56.15
		1	1.276	15.31			3	5.105	61.26
		$1 \frac{1}{8}$	1.435	17.22			3 ¹ / ₄	5.530	66.36
		$1 \frac{1}{4}$	1.596	19.15			$3 \frac{1}{2}$	5.956	71.47
		$1 \frac{1}{2}$	1.915	22.98			4	6.806	81.67
		$1 \frac{3}{4}$	2.233	26.80			$4 \frac{1}{2}$	7.657	91.88
		2	2.552	30.62			5	8.508	102.10
		$2 \frac{1}{4}$	2.872	34.46			$5 \frac{1}{2}$	9.359	112.31
		$2 \frac{1}{2}$	3.191	38.29			6	10.210	122.52
		$2 \frac{3}{4}$	3.509	42.11			7	11.911	142.93
		3	3.829	45.95			8	13.613	163.96
		$\frac{3 1}{4}$	4.148	49.78			9	15.314	183.77
		$3 \frac{1}{2}$	4.467	53.60	- /		10	17.016	204.19
		4	5.105	61.26	5/ ₈	Х	$\frac{3}{4}$	1.596	19.15
		$\frac{4}{5}$	5.743	68.92 76.57			7/8	1.861	22.33
		5	6.381 7.020	76.57 84.24			1	2.127	25.52
		5 1/2 6	7.657	91.88			$\frac{1}{1}\frac{1}{8}$	2.393 2.658	28.72 31.90
		7	8.933	91.88 107.20			$1 \frac{1}{4}$ $1 \frac{1}{2}$	2.038	31.90 38.29
		8		107.20				3.723	44.68
		10		153.14			$\frac{1 \frac{3}{4}}{2}$	4.254	51.05
7/16	x	$\frac{1}{1/2}$.745	8.94			$\frac{2}{2} \frac{1}{4}$	4.785	57.42
7 16	л	$\frac{1}{2}$ $\frac{3}{4}$	1.117	0.94 13.40			$\frac{2}{2}\frac{1}{4}$	5.318	63.82
		5/4 1	1.489	17.87			$\frac{2}{2}\frac{1}{2}$	5.850	70.20
		$1 \frac{1}{4}$	1.861	22.33			$\frac{2}{3}$	6.381	76.57
		$1 \frac{1}{1}_{2}$	2.233	26.80			$3\frac{1}{2}$	7.445	89.34
		$1 \frac{3}{4}$	2.605	31.26			4		102.10
		2	2.979	35.75			$\frac{1}{4} \frac{1}{2}$		114.86
		-	,,,	57.15			- /2	<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Weights For Cold Drawn Flat Bars (Cont.)

Size	In	Inches	Wt. Per	r Wt. Per 12'	Size	In Ir	nches	Wt. Per	Wt. Per
5/		5	<i>Ft.</i> 10.640	127.68	7/	37	5	<i>Ft.</i>	<u>12'</u> 179.72
5/ ₈	х			127.08	7/8	х	5 6	14.894 17.867	178.73
		$5 \frac{1}{2}$						23.822	
		6	12.762	153.14			8	-	285.86
		7	14.894	178.73	1		12	35.734	
		8		204.29	1	х	$\frac{1}{\frac{1}{4}}$	4.254	51.05
		10	21.280	255.36			$\frac{1}{1/2}$	5.105	61.26
21		12	25.524	306.29			$1 \frac{3}{4}$	5.956	71.47
$3/_{4}$	х	7/ ₈	2.233	26.80			2	6.806	81.67
		1	2.552	30.62			$\frac{2}{2} \frac{1}{4}$	7.657	91.88
		$1 \frac{1}{8}$	2.872	34.46			$2 \frac{1}{2}$		102.10
		$1 \frac{1}{4}$	3.191	38.29			$2 \frac{3}{4}$		112.31
		$1 \frac{1}{2}$	3.829	45.95			3	10.210	122.52
		$1 \frac{3}{4}$	4.467	53.60			3 ¹ / ₄	11.060	
		2	5.105	61.26			$3 \frac{1}{2}$	11.911	
		$2 \frac{1}{4}$	5.743	68.92			4		163.36
		$2 \frac{1}{2}$	6.381	76.57			$4 \frac{1}{2}$		183.77
		2 3/4	7.020	84.24			5		204.19
		3	7.857	91.88			5 1/ ₂	18.718	
		3 1/4	8.295	99.54			6	20.419	245.03
		$3 \frac{1}{2}$	8.933	107.20			7	23.822	
		4	10.210	122.52			8	27.226	326.71
		$4 \frac{1}{2}$	11.491	137.89			10	34.032	408.38
		5	12.762	153.14			12	40.838	490.06
		5 ¹ / ₂	14.038	168.46	$1 \frac{1}{2}$	$_4$ X	$1 \frac{1}{2}$	6.381	76.57
		6	15.314	183.77			1 3/ $_4$	7.445	89.34
		7	17.887	214.40			2	8.508	102.10
		8	20.419	245.03			$2 \frac{1}{4}$	9.572	114.86
		10	25.524	306.29			$2 \frac{1}{2}$	10.640	127.68
		12	30.629	367.55			$2 \frac{3}{4}$	11.701	140.41
7/8	х	1	2.978	35.74			3	12.762	153.14
		$1 \frac{1}{8}$	3.350	40.20			$3 \frac{1}{2}$	14.894	178.73
		$1 \frac{1}{4}$	3.723	44.68			4	17.016	204.19
		$1 \frac{3}{8}$	4.059	49.14			$4 \frac{1}{2}$	19.148	229.78
		$1 \frac{1}{2}$		53.60			5		255.24
		$1 \frac{3}{4}$	5.211	62.53			6	25.524	
		2	5.956				8	34.032	
		$2 \frac{1}{4}$	6.700				10	42.540	
		-	7.445	89.34			12		612.58
			8.189		1 1/	. X		8.933	
		$\frac{2}{3}$		107.20	- /	<u> </u>	2		122.52
		$3 \frac{1}{2}$		125.04			$2 \frac{1}{4}$		
		<u> </u>		142.93				12.762	
		7	11.711	174.73			4 1/2	14./04	1)),14

Weights For Cold Drawn Flat Bars (Cont.)

Size In Inches		Wt. Per	r Wt. Per	Size In Inches		Wt. Per	Wt. Per	
		Ft.	<i>12</i> '				Ft.	<i>12</i> '
$1 \frac{1}{2} x$	$2 \frac{3}{4}$	14.038	168.46	2	х	$2 \frac{1}{2}$	17.016	204.19
	3	15.314	183.77			2 3/4	18.718	224.62
	3 ¹ / ₄	16.590	199.10			3	20.419	245.03
	$3 \frac{1}{2}$	17.867	214.40			$3 \frac{1}{2}$	23.822	285.86
	4	20.419	245.03			4	27.226	326.71
	$4 \frac{1}{2}$	22.972	275.66			$4 \frac{1}{2}$	30.625	367.55
	5	25.524	306.29			5	34.032	408.38
	6	30.629	367.55			6	40.838	490.06
	8	40.838	490.06			8	54.451	653.41
	10	51.048	612.58			10	68.064	816.77
	12	61.258	735.10			12	81.677	980.12
1 3/4 x	2	11.911	142.93	2 1/	$/_2 \mathbf{x}$	3	25.524	306.29
	$2 \frac{1}{4}$	13.401	160.81			$3 \frac{1}{2}$	29.778	357.34
	$2 \frac{1}{2}$	14.889	178.67			4	34.032	408.38
	$2 \frac{3}{4}$	16.375	196.50			5	42.540	510.48
	3	17.867	214.40			6	51.048	612.58
	$3 \frac{1}{2}$	20.845	350.14			8	68.064	816.77
	4	23.822	285.86	3	Х	$3 \frac{1}{2}$	35.734	428.81
	5	29.778	357.34			4	40.838	490.06
	6	35.734	428.81			$4 \frac{1}{2}$	45.943	551.32
	8	47.645	571.74			5	51.048	612.58
2 x	$2 \frac{1}{4}$	15.310	183.72			6	61.258	735.10

Cold Drawn Square Bars

Size In Inches	Wt. Per Ft.	Wt. Per 12'	Size In Inches	Wt. Per Ft.	Wt. Per 12'	
1/8	.053	.64	1 1/16	3.842	46.10	
$3/_{16}$.120	1.44	1 1/4	5.318	63.82	
$1/_{4}$.213	2.56	$1 \frac{3}{8}$	6.434	77.21	
5/ ₁₆	.332	3.98	$1 \frac{1}{2}$	7.657	91.88	
3/8	.478	5.74	1 5/8	8.986	107.83	BARS
7/ ₁₆	.652	7.82	$1 \frac{3}{4}$	10.423	125.08	0.
$1/_{2}$.851	10.21	1 7/8	11.964	143.57	
9/ ₁₆	1.077	12.92	2	13.613	163.36	
5/ ₈	1.329	15.95	$2 \frac{1}{4}$	17.229	206.75	
$11/_{16}$	1.609	19.31	$2 \frac{1}{2}$	21.270	255.24	
3/4	1.915	22.98	$2 \frac{3}{4}$	25.737	308.84	
$13/_{16}$	2.247	26.96	3	30.629	367.55	
7/8	2.605	31.26	3 ¹ / ₄	35.944	431.33	
¹⁵ / ₁₆	2.991	35.89	$3 \frac{1}{2}$	41.689	500.27	
1	3.403	40.84	4	54.400	652.80	

Page 87

Cold Drawn Hexagon Bars

Size In Inches	Wt. Per Ft.	Wt. Per 12'	Size In Inches	Wt. Per Ft.	Wt. Per 12'
$3/_{16}$.104	1.25	1 7/16	6.091	73.09
$1/_{4}$.184	2.21	$1 \frac{1}{2}$	6.631	79.57
$5/_{16}$.288	3.46	1 5/ ₈	7.782	93.38
$3/_{8}$.414	4.97	$1 \frac{3}{4}$	9.026	108.31
7/16	.565	6.78	1 7/8	10.360	124.32
$1/_{2}$.737	8.84	2	11.791	141.49
9/ ₁₆	.933	11.20	2 1/8	13.313	159.76
5/ ₈	1.151	13.81	2 1/4	14.556	174.67
$11/_{16}$	1.393	16.72	2 3/ ₈	16.626	199.51
$3/_{4}$	1.658	19.90	$2 \frac{1}{2}$	18.417	221.00
$13/_{16}$	1.946	23.35	2 5/ ₈	20.309	243.71
7/8	2.256	27.07	2 3/4	22.291	267.49
$15/_{16}$	2.590	31.08	3	26.525	318.30
1	2.947	35.36	3 ¹ / ₈	28.787	345.44
$1 \frac{1}{8}$	3.731	44.77	3 1/ ₄	31.101	373.20
1 ³ / ₁₆	4.156	49.87	$3 \frac{1}{2}$	36.104	433.25
$1 \frac{1}{4}$	4.605	55.26	4	47.154	565.85
$1 \frac{1}{8}$	5.572	66.86			

Stressproof[®] Cold Finished Shafting

This is a heavily cold worked, strain relieved carbon killed steel bar. It is available as a Cold Drawn Bar in 12 foot lengths. Some locations stock an ASTM-1144 bar with similar properties.

Analysis Carbon Manganese Sulphur Silicon .40 - .48 1.35 - 1.65 .24 - .33 .15 - .30 Applications

Ideal for general maintenance and repair, as all properties are "built in" the bar. Production parts include axles, collets, gears, spline shafts, spindles, pump shafts, feed and lead screws to all kinds, worms, studs, etc.

Machinability

Stressproof machines well for its strength, with excellent tool life and a smooth finish. Cutting speeds of about 125 surface feet per minute are recommended.

Mechanical Properties							
Size In Inches	Min. Yield Point	Average Tensile Strength					
1/2" To 2 "	100,000 p.s.i.	125,000 p.s.i.					
Over 2 " To 3 1/4"	90,000 p.s.i.	120,000 p.s.i.					
	Tolerance	25					
Size In Inches	Cold Drawn (Plu	us) Cold Drawn (Minus)					
$5/_{16}$ to 1 $1/_{2}$ " Inc.	0.000	0.004					
1 $1/_2$ to 2 $1/_2$ " Inc.	0.000	0.005					
2 1/4 to 4"	0.000	0.006					
	Warpage	2					

Almost completely free from strains, it may be splined, key seated, broached, drilled, reamed, milled or threaded. Expensive straightening operations are eliminated.

Wearability

Although easily machined, wear resistant properties are unusually high. Many heat treated or carburized parts have been successfully replaced by unhardened Stressproof in spite of its relative softness.

Reduced Costs

By eliminating hardening and straightening operations, reducing machining time, lowering steel costs when replacing alloy steels, and by improving the quality of the finished part, STRESSPROOF will give you reductions in costs on many parts. While the price is slightly higher than ordinary carbon bars, its increased strength, wearability and service life make it the most economical steel to use in many applications.

Precision C-1045 Shafting

Precision Shafting represents the highest degree of straightness, accuracy, concentricity and surface perfection obtainable in commercial practice. These bars are turned and centerless ground to close limits over their entire length, and burnished to a high finish after grinding. It is important to note that turning does not alter the physical properties of the bar.

		Analysis		
Specification	Carbon	Manganese	Phosphorus	Sulphur
C-1045	.4350	.6090	.04 Max	.05 Max.

Application

This steel is often called pump rod or pump shafting due to its high degree of straightness (important in high speed shafting). The special straightness serves to prevent vibrations and wear on packings and bearings which must be avoided in deep well pump work. Other uses include motor shafts and other applications where high speed work necessitates straightness and accuracy along with the ability to be machined unsymmetrically with practically no danger of warpage.

Typical Mechanical Properties

	~ 1		-				
Spec.	Tensile (P.S.I.)	Yield (P.S.I.)	0	% Reduction of Area			
C-1045	110,000	78,000	20%	55			
Tolerances							
Diar	neter Of Bar	Plu	is Tolerance	Minus Tolerance			
Less Tha	$n 1 \frac{1}{2}$		0	.001"			
1 1/2" To	Under 2 1/2"		0	.0015"			
2 1/2" To	3" Inclusive		0	.002"			
Over 3" '	To 4" Inclusi	ve	0	.003"			
	Screw Machine Stock						

C-12L14 Cold Finished Rounds

These special quality CF rounds have a machinability rating on automatic screw machines of 300 surface feet per minute. These rounds are of screw stock quality used for instruments, electronic parts, and machine shafts. They are also suitable for nickel plating.

Analysis

Spec.	Carbon	Manga- nese	Phosphorus	Sulphur	Lead
C-12L14	.15 Max.	.085 - 1.15	.0409	.2635	.1535

Concrete Reinforcing Bars ASTM-A615

The ASTM-A615 Specification pertains to deformed and plain billet-steel concrete reinforcement bars in cut lengths or coils. A deformed bar is defined as a bar whose surface is provided with lugs or protrusions (referred to as deformations) which inhibit longitudinal movement of the bar relative to the concrete which surrounds the bar in such construction. The standard sizes and their number designations are listed below.

Bars are of 3 minimum yields: namely, 40,000 psi, 60,000 psi, and 75,000 psi; designated as Gr. 40, Gr. 60, and Gr. 75, respectively.

	· - · · · · · · · · · · · · · · · · · ·				
	Gr. 40	Gr. 60	Gr. 75		
Tensile Strength, Min. P.S.I.	60,000	90,000	100,000		
Yield Strength, Min. P.S.I.	40,000	60,000	75,000		
Bar Number	Minimum % of elongation in 8				
	in.				
3	11%	9%	7%		
4,5,6	12%	9%	7%		
7,8		8%	7%		
9,10		7%	6%		
11, 14, 18		7%	6%		

Mechanical Properties

Bend Test Requirements

(Minimum Diameter for Bend Tests = 180° , d = Nominal Diameter of Bar)

Bars are capable of being bent around a pin without cracking on the outside diameter as follows: (Number 14 & 18 are bent 90°).

Bar Number	Grade 40	Grade 60	Grade 75
3,4,5	$3 \frac{1}{2} X d$	$3 \frac{1}{2} X d$	5 X d
6	5 X d	5 X d	5 X d
7,8		5 X d	5 X d
9,10		7 X d	7 X d
11		7 X d	7 X d
14,18		9 X d	9 X d

ASTM-A706 Specification pertains to low-alloy steel deformed bars in cut lengths or coils for concrete reinforcement, intended for applications where welding and/or bending, are of importance.

Mechanical Properties

	A	
Tensile Strength, Min. P.S.I.	80,000	
Yield Strength, Min. P.S.I.	60,000	
Yield Strength, Max. P.S.I. 78,000		
Tensile Strength shall not be less than 1.25 times the actual yield strength.		

Concrete Reinforcing Bars ASTM-A706

Bar Number	Minimum % of elongation in 8 in.
3, 4, 5, 6	14%
7, 8, 9, 10, 11	12%
14, 18	10%

Bend Test Requirements (Minimum Diameter for Bend Tests = 180°, d = Nominal Diameter of Bar) Bars are capable of being bent around a pin without crack-ing on the outside diameter as follows:

Bar Number	Diameter of Pin
3, 4, 5	3 X d
6, 7, 8	4 X d
9, 10, 11	6 X d
14, 18	8 X d

Concrete Reinforcing Bars Weights & Dimensions

Bar Number	Weight Per Ft.	Nominal Diameter	Nominal Dec. Diam.	Cross Sec- tion Area (In ²)	Perimeter In Inches
3	.376	3/8	0.375	0.11	1.178
4	.669	1/2	0.500	0.20	1.571
5	1.044	5/8	0.625	0.31	1.963
6	1.503	3/4	0.750	0.44	2.356
7	2.046	7/8	0.875	0.60	2.749
8	2.673	1	1.000	0.79	3.142
9	3.403	1 1/8	1.128	1.00	3.544
10	4.307	1 1/4	1.270	1.27	3.990
11	5.318	1 3/8	1.410	1.56	4.430
14	7.650	1 5/8	1.693	2.25	5.320
18	13.600	2 1/4	2.257	4.00	7.090

Color Codes

To assist you in the identification of steel products purchased from PDM Steel Service Centers, please refer to the following Color Codes. The color code list which follows is arranged according to product category and description:

Hot Rolled Strip & Bars	Structural Shapes	Pipe & Round Tubing
Cold Rolled Strip & Bars	Sq. & Rectangular Tubing	Expanded Metal
Alloy Rounds	Sheet	Expanded Met. Grating
Rebar	Plate	

Hot Rolled Strip & Bars

HR Strip	*	
Thickness	Specification	Color
1/8"	Comm.Qual.	Yellow
³ / ₁₆ "	Comm. Qual.	Green

HR Flats, Rounds, and Squares

HR Flats, Kounas, Thickness	Specification	Color
1/8"	A36	Yellow
3/16"	A36	Green
$1/_{4}$ "	A36	Red
5/ ₁₆ "	A36	White
3/8"	A36	Blue
⁷ / ₁₆ "	A36	Gold
1/2"	A36	Orange
9/ ₁₆ "	A36	Copper
5/ ₈ "	A36	Yellow
3/4"	A36	Green
7/8"	A36	Pink
1"	A36	Black
1 1/8"	A36	Yellow
$1 \frac{1}{4}$ "	A36	Red
1 3/8"	A36	Blue
1 1/2"	A36	Orange
2"	A36	Black

Description S	pecification	Color
HR Flat and Round (Min. 50 ksi)	A529	Blue and White
HR Flat	A572 Gr. 50	Green and White
HR Flat	C1008	Blue and Green
HR Flat and Round	C1018	Black & Blue
HR Flat, Round, and Square	C1040/1045	Green and Red
HR Flat	C1055	Green and Orange
HR Flat, Hollow, and Solid Tul Ba	r C1070	Red and Orange
HR Flat, Round, Square	C1095	Silver
B.E. Weedcutter	C1055	Green
B.E. Weedcutter	C1070	Orange

Hot Rolled Bar Shapes

Hot Rolled Bar Shapes			
Bar Angles, Channels & Tees			
-	pecification	Color	
1/8"	A36	Yellow	
³ / ₁₆ "	A36	Green	
Bar Tees	A36	Blue	
E E E E E E E E E E E E E E E E E E E	Alloy Bars		
Description S	pecification	Color	
HR HT Stress Relieved Round	4140	Blue and Purple	
CF HT Stress Relieved Round	4140	Green and Purple	
CF HT Stress Relieved Square	4130	White and Purple	
CF HT Sq. (NOT Stress Relieved)	4130	White and Orange	
CF Round	ETD 150®	Purple	
	Rebar		
Description S	pecification	Color	
Rebar GR 40	A615	Blue	
Rebar GR 60	A615	Red	
Rebar GR 60 (Weldable)	A706	Yellow	
Cold	Finished Bars		
Description S	pecification	Color	
CF Flat	C1018	Black	
CF Round	C1018	Black	
CF Rd-Drawn G.&P./T.G.&P.	C1018	Black and White	
CF Round	C1045	Red	
CF Round	C1215	White	
CF Round-Leaded	12L14	Orange	
CF Round	1117	Gold	
CF Rd. Stressproof®	1144	Yellow	
CF Rd. Stress Relieved	1144	Green	
Fatigue Proof®	1137	Brown	
Precision Ground Shaft	C1045	Pink	
xx Undersize **Over 1" stored in cardboard tubes.			
CF Square	C1018	Black	
CF Square (Round Corners)	C1018	Pink	
CF Hex	C1018	Black	
CF Hex - Leaded	12L14	Orange	

Structural Shapes

Structural Angles	······		
Thickness	Specification	Color	
1/8"	A36	Yellow	
³ / ₁₆ "	A36	Green	
1/4"	A36	Red	
5/ ₁₆ "	A36	White	
3/8"	A36	Blue	
⁷ / ₁₆ "	A36	Gold	
1/2"	A36	Orange	
5/8"	A36	Yellow	
3/4"	A36	Green	
7/8"	A36	Pink	
1"	A36	Black	
Description	Specification	Color	
Wide Flange	A36	Blue	
Hi Tensile	A572 Gr.50	Green & Yellow	
Dual Grade	A992		
M Beams (Misc.)	A36	Blue	
S Beams (Std. I)	A36	Blue	
H Pilings (Domestic)	A36	Blue and Red	
H Pilings (Import)	A36	Blue and White	
Channels	A529	Blue and White	
Channels, Standard	A36		
1^{st} wt.		Blue	
2^{nd} wt.		Blue and Red	
3 rd wt.		Blue and Green	
4^{th} wt.		Blue and Yellow	
Channels, Misc.	A36	Blue	
Tube, Sq	uare & Rectangul	lar	
Wall Thickness	Specification	Color	
.049	A500 A / A513	Black	
.060, .063, .065	A500 A / B / C / A513	White	
.072, .073, .075	A500 A / A513	Copper	
.083	A500 A / B / C / A513	Pink	
.090, .095	A500 A / A513	Blue	
.109	A500 A / A513	Purple	
.120, .125	A500 A / B / C	Yellow	
.180, .188	A500 B / C	Green	
.238, .250	A500 B / C	Red	
.313	A500 B	White	
.375	A500 B	Blue	
.500	A500 B	Orange	
.625	A500 B	Yellow	
Tube, Pre-Primed			
Wall Thickness	Specification	Color	
Under 2" Sq. & 3" X 1" Rect.	A513	As Above	
Over 2" Sq. & 3" X $1 \frac{1}{2}$ " Rect.	A500 B	As Above	

Color Codes

Tube, Flasbout

2.53 X 2.53 X 0.250

Red and Gold

Tube, Round HREW & CREW

1000, 10		
Wall Thickness	Specification	Color
Mech Tube-HREW & CREW	A513-T1 & T2	Same as Square Tube
	Pipe	
Description	Specification	Color
Pipe Std (Sch 40)	A53A	Green
X Heavy (Sch 80)	A53A	White
Pipe Std (Sch 40)	A53B	Blue
X Heavy (Sch 80)	A53B	Red
Pre-Primed (KleenKote®) Pipe	No Grade	N/C
Uncoated Pipe	A53A	Orange
Uncoated Pipe	A53B	Pink
Uncoated Pipe (Sched. 10)	A53A	Gold
	Dista	

Plate

Plate products are marked with the color code for the grade on the corners of the plate. The color code for the thickness of the plate is marked as a stripe of color on the ends of the plate. (Example: 5/8" A572 Gr 50 would have Green & Yellow on all four corners to denote the grade and a stripe of Blue on both ends to denote the thickness.)

Description	Specification	Color Code For Grade (On all Corners)
Hot Rolled	A36	Blue
Floor Plate	Comm. Q	No Color
Abrasion Resistant	AR235	Yellow
Brinell	321	Purple and Yellow
Brinell	360	Red and Yellow
Brinell	400	Copper and Yellow
Brinell	500	Black and Yellow
Brinell, Formable	400	White and Yellow
Brinell, Formable	440	Pink and Yellow
Brinell, Formable	500	Pink, Black and
Yellow		
Constructional Alloy (Tl® Type)	A514	Pink
High Strength, Low Alloy	A656 Gr 80	Pink and White
High Tensile	A572 Gr 42	Green and White
High Tensile	A572 Gr 50	Green and Yellow
High Tensile	A572 Gr 60	Green and Gray
ABS Certified	A283 Gr C	Green and Blue
Weathering	A588	Blue and Yellow
HR Corten®	A242	Blue and White
HR Pressure Vessel Quality	A516 Gr 70	White
HR Low Carbon	C1010	Copper
HR Low Carbon	C1015	Copper and Blue
HR Low Carbon (Robinson Proc	c.) C1010	Copper and Purple
HR (Robinson Proc.)	A36	Blue and Purple
HR Stress Free Plate	A36	Blue and Orange
HR Stress Free Plate	C1008	Yellow and Orange
HR Stress Free Plate	A570	Red and Orange
HR Med Carbon	C1035	Orange

HR Med Carbon		C1040/1045	Green
HR Med Carbon		C1055	Green and Orange
HR UM		A36	Blue
HR UM (Min. 50 ksi)		A529	Blue and White
33 Max. Carbon		33 Max. Carbon	Gold
		Plate	
7	bickness	Color Code/Thic	kness
		(Marked on both	
	³ / ₁₆ "	Green	
	1/4"	Red	
	5/ ₁₆ "	White	
	3/ ₈ "	Blue	
	⁷ / ₁₆ "	Gold	
	1/2''	Orange	
	5/ ₈ "	Yellow	
	3/4"	Green	
	7/ ₈ "	Pink	
	1"	Black	
	$1 \ ^{1}/_{8}$ "	Yellow	
	1 ³ / ₁₆ "	Green	
	$1 \ \frac{1}{4}$ "	Red	
	1 ³ / ₈ "	Blue	
	$1 \frac{1}{2}$ "	Orange	
	1 5/ ₈ "	Yellow	
	$1 \frac{3}{4}$ "	Green	
	1 ⁷ / ₈ "	Pink	
	2"	Black	
	$2 \frac{1}{8}$ "	Yellow	
	$2 \frac{1}{4}$ "	Red	
	$2 \frac{1}{2}$ "	Orange	
	2 3/4"	Green	
	3"	Black	
	3 1/2"	Orange	
	4" . 1	Black	
	4 1/2"	Orange	

Sheet, Hot Rolled and Gauge Floor Plate

Thick	eness	Specification	Color
7 Ga	(.1793)	A-1011	Orange
10 Ga	(.1345)	A-1011	Gold
11 Ga	(.1196)	A-1011	Black
12 Ga	(.1046)	A-1011	Yellow
13 Ga	(.0847)	A-1011	Orange
14 Ga	(.0747)	A-1011	Red
16 Ga	(.0598)	A-1011	Green

Sheet Miscellaneous

Description	Specification	Color
Sheet (Calwell®)	PQ55	Red and Black
Sheet (Robinson Process)	C1010	Copper and Purple
Sheet (High Tensile)	A-1011 (Gr 45)	White
Sheet (High Tensile)	A-1011 (Gr 50)	Green and Yellow

Color Codes

Sbeet, Cold Rolled

Thick	eness	Śpec.	Color
10 Ga	(.1345)	A366	Gold
11 Ga	(.1196)	A366	Black
12 Ga	(.1046)	A366	Yellow
13 Ga	(.0847)	A366	Orange
14 Ga	(.0745)	A366	Red
16 Ga	(.0598)	A366	Green
18 Ga	(.0478)	A366	Pink
20 Ga	(.0359)	A366	Gold
22 Ga	(.0299)	A366	Yellow
24 Ga	(.0239)	A366	Red
26 Ga	(.0179)	A366	Green

Sheet, Flat Galvanized

Thickness	Spec.	Color
10 Ga (.138)	A653 CQ, CTD	Gold
12 Ga (.109)	A653 CQ, CTD	Yellow
14 Ga (.079)	A653 CQ, CTD	Red
16 Ga (.064)	A653 LFQ, CTD	Green
18 Ga (.052)	A653 LFQ, CTD	Pink
20 Ga (.040)	A653 LFQ, CTD	Gold
22 Ga (.034)	A653 LFQ, CTD	Yellow
24 Ga (.028)	A653 LFQ, CTD	Red
26 Ga (.022)	A653 LFQ, CTD	Green
28 Ga (.019)	A653 LFQ, CTD	Pink
30 Ga (.016)	A653 LFQ, CTD	Gold
PQS Electro Galvanized (Chromat	ed)A653 Class C	As Above
PQS Wiped Galvanized (A40)	A653 LFQ	As Above
Aluzinc Plus (Steel sheet with alu	minum/zinc coating)	As Above

Expanded Metal

Width of opening (color end). Thickness of strand (color side)		
Opening	Thickness	Color
1/4"	# 6	Black
1/2"	# 9	Red
1/2"	# 10	Gold
3/4"	# 13	Green
1"	# 14	White
1"	# 16	Orange
$1 \frac{1}{2}$ "	# 18	Blue
2"	# 20	Yellow

Example: 1/4" #20—Black end, yellow side.

Expanded Metal Grating

Weight	Spec.	Color
3.00 Lb.	Comm Q	White
3.14	Comm Q	Orange
4.00	Comm Q	Yellow
4.27	Comm Q	Green
5.00	Comm Q	Blue
6.25	Comm Q	Gold
7.00	Comm Q	Red
All Other Products		No Color

Notes	

Notes